Главная страница

Конспект лекций по УД Физика (1 курс, СПО, технический профиль ). Конспект лекций для студентов 1 курса всех форм обучения Специальность 19. 02. 10 Технология продукции общественного питания


Скачать 4.41 Mb.
НазваниеКонспект лекций для студентов 1 курса всех форм обучения Специальность 19. 02. 10 Технология продукции общественного питания
АнкорКонспект лекций по УД Физика (1 курс, СПО, технический профиль
Дата02.10.2019
Размер4.41 Mb.
Формат файлаdoc
Имя файлаКонспект лекций по УД Физика (1 курс, СПО, технический профиль ).doc
ТипКонспект
#88257
страница31 из 49
1   ...   27   28   29   30   31   32   33   34   ...   49

19.3. Свободные затухающие колебания

На практике всякое колебание, которое не поддерживается извне, затухает, амплитуда его колебания с течением времени уменьшается. Причина затухания обуславливается силами, тормозящими движение, например, силой трения в месте подвеса при колебании маятника или силой сопротивления среды. Чтобы исследовать этот вопрос, надо написать уравнение, выражающее второй закон Ньютона, принимая в расчет силы сопротивления. Мы ограничимся рассмотрением случая, когда точка совершает прямолинейное колебание в вязкой среде. Сила сопротивления среды зависит от скорости движения точки и в случае малых скоростей ее можно считать пропорциональной скорости v; направлена она в сторону, противоположную скорости; таким образом, силу сопротивления можно положить равной , где r – постоянная величина, называемая коэффициентом сопротивления. Эта сила прибавится к упругой силе –kx, откуда полная сила, действующая на точку, равна и, следовательно, второй закон Ньютона может быть написан в виде:

.

Решение последнего уравнения имеет вид

,

где введены обозначения и .

Это решение представляет собою колебание с амплитудой , уменьшающейся с течением времени. Период колебания в среде с сопротивлением больше, чем период колебания такой же массы m под действием такой же упругой силы в среде без сопротивления. График зависимости х от времени представлен на рисунке. Как видно, колебания затухают со временем.

Логарифм отношения двух последовательных значений амплитуд, отстоящих друг от друга на время, равное периоду Т, называется логарифмическим декрементом затухания

.

Поясним физический смысл величин и . Обозначим через промежуток времени, за который амплитуда колебаний уменьшается в e paз. Тогда

,

откуда , или

.

Следовательно, коэффициент затухания есть физическая величина, обратная промежутку времени , в течение которого амплитуда убывает в е раз. Величину называют временем релаксации. Пусть, например, = 102с-1 – это означает, что амплитуда колебаний убывает в е раз за 10-2 с. Пусть N – число колебаний, после которых амплитуда уменьшается в е раз. Тогда

,

.

Следовательно, логарифмический декремент затухания есть физическая величина, обратная числу колебаний N, по истечении которых амплитуда убывает в е раз. Пусть, например, = 0,01. Это значит, что амплитуда колебаний убывает в е раз по истечении 100 колебаний.
1   ...   27   28   29   30   31   32   33   34   ...   49


написать администратору сайта