Главная страница

Лекции по МОР. Конспект лекций по дисциплине методы оптимальных решений Направление подготовки 080100 Экономика


Скачать 1.02 Mb.
НазваниеКонспект лекций по дисциплине методы оптимальных решений Направление подготовки 080100 Экономика
АнкорЛекции по МОР.docx
Дата02.05.2017
Размер1.02 Mb.
Формат файлаdocx
Имя файлаЛекции по МОР.docx
ТипКонспект лекций
#6625
страница12 из 16
1   ...   8   9   10   11   12   13   14   15   16

5.3. Применение симплексного метода в экономических задачах


Рассмотрим применение симплексного метода на примерах экономических задач18.

Пример. Предприятие располагает тремя производственными ресурсами (сырьем, оборудование, электроэнергией) и может организовать производство продукции двумя различными способами. Расход ресурсов и амортизация оборудования за один месяц и общий ресурс при каждом способе производства заданы в таблице (в ден. ед.).


Производственный ресурс

Расход ресурсов за 1 месяц при работе

Общий ресурс

по 1 способу

по 2 способу

Сырье

1

2

4

Оборудование

1

1

3

Электроэнергия

2

1

8


При первом способе производства предприятие выпускает за один месяц 3 тыс. изделий, при втором – 4 тыс. изделий.

Сколько месяцев должно работать предприятие по каждому из этих способов, чтобы при наличных ресурсах обеспечить максимальный выпуск продукции?

Решение. Обозначим: х1время работы предприятия по первому способу; х2 – время работы предприятия по второму способу. Экономико-математическая модель задачи:



при ограничениях:



Приведем задачу к каноническому виду:



при ограничениях:



Составляем симплексную таблицу 1-го шага:


сi

БП

3

4

0

0

0



х1

х2

х3

х4

х5

bi

0

x3

1

2

1

0

0

4

0

x4

1

1

0

1

0

3

0

x5

2

1

0

0

1

8

j

-3

-4

0

0

0

0


= (0, 0, 4, 3, 8), = 0.

В индексной строке j имеются две отрицательные оценки, значит найденное решение не является оптимальным и его можно улучшить. В качестве ключевого столбца следует принять столбец базисной переменной х2, а за ключевую строку – строку переменной х3, где min (4/2, 3/1, 8/1) = min (2, 1, 8) = 2.

Ключевым элементом является «2». Вводим в столбец БП переменную х2, выводим х3. Составляем симплексную таблицу 2-го шага:


сi

БП

3

4

0

0

0



х1

х2

х3

х4

х5

bi

4

x2

1/2

1

1/2

0

0

2

0

x4

1/2

0

-1/2

1

0

1

0

x5

3/2

0

-1/2

0

1

6

j

-1

0

2

0

0

8


= (0, 2, 0, 1, 6), = 8.

В индексной строке имеется одна отрицательная оценка. Полученное решение можно улучшить. Ключевым элементом является «1/2». Составим симплексную таблицу 3-го шага:

сi

БП

3

4

0

0

0



х1

х2

х3

х4

х5

bi

4

x2

0

1

1

-1

0

1

3

x1

1

0

-1

2

0

2

0

x5

0

0

1

-3

1

3

j

0

0

1

2

0

10


Все оценки свободных переменных j  0, следовательно, найденное опорное решение является оптимальным:

= (2, 1, 0, 0, 3), = 10.

Ответ: максимальный выпуск продукции составит 10 тыс. ед., при этом по первому способу предприятие должно работать два месяца, по второму – один месяц.
1   ...   8   9   10   11   12   13   14   15   16


написать администратору сайта