Лекции по МОР. Конспект лекций по дисциплине методы оптимальных решений Направление подготовки 080100 Экономика
Скачать 1.02 Mb.
|
5.3. Применение симплексного метода в экономических задачахРассмотрим применение симплексного метода на примерах экономических задач18. Пример. Предприятие располагает тремя производственными ресурсами (сырьем, оборудование, электроэнергией) и может организовать производство продукции двумя различными способами. Расход ресурсов и амортизация оборудования за один месяц и общий ресурс при каждом способе производства заданы в таблице (в ден. ед.).
При первом способе производства предприятие выпускает за один месяц 3 тыс. изделий, при втором – 4 тыс. изделий. Сколько месяцев должно работать предприятие по каждому из этих способов, чтобы при наличных ресурсах обеспечить максимальный выпуск продукции? Решение. Обозначим: х1 – время работы предприятия по первому способу; х2 – время работы предприятия по второму способу. Экономико-математическая модель задачи: при ограничениях: Приведем задачу к каноническому виду: при ограничениях: Составляем симплексную таблицу 1-го шага:
= (0, 0, 4, 3, 8), = 0. В индексной строке j имеются две отрицательные оценки, значит найденное решение не является оптимальным и его можно улучшить. В качестве ключевого столбца следует принять столбец базисной переменной х2, а за ключевую строку – строку переменной х3, где min (4/2, 3/1, 8/1) = min (2, 1, 8) = 2. Ключевым элементом является «2». Вводим в столбец БП переменную х2, выводим х3. Составляем симплексную таблицу 2-го шага:
= (0, 2, 0, 1, 6), = 8. В индексной строке имеется одна отрицательная оценка. Полученное решение можно улучшить. Ключевым элементом является «1/2». Составим симплексную таблицу 3-го шага:
Все оценки свободных переменных j 0, следовательно, найденное опорное решение является оптимальным: = (2, 1, 0, 0, 3), = 10. Ответ: максимальный выпуск продукции составит 10 тыс. ед., при этом по первому способу предприятие должно работать два месяца, по второму – один месяц. |