КОНСПЕКТЫ ЛЕКЦИЙ биология. Конспекты лекций по учебной дисциплине Биология
Скачать 398.27 Kb.
|
Часть энергии, освобождаемой из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, то есть накапливается в богатых энергией фосфатных связях АТФ.Именно АТФ обеспечивает энергией все виды клеточных функций: биосинтез, механическую работу (деление клетки, сокращение мышц), активный перенос веществ через мембраны, поддержание мембранного потенциала в процессе проведения нервного импульса, выделение различных секретов. Рисунок 1. Схема строения АТФ и превращения её в АДФ Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трех остатков фосфорной кислоты (рис.1). Аденин, рибоза и первый фосфат образуют аденозинмонофосфат (АМФ). Если к первому фосфату присоединяется второй, получается аденозиндифосфат (АДФ). Молекула с тремя остатками фосфорной кислоты (АТФ) наиболее энергоемка. Отщепление концевого фосфата АТФ сопровождается выделением 40 кДж вместо 12 кДж, выделяемых при разрыве обычных химических связей. Этапы энергетического обмена. Энергетический обмен обычно делят на три этапа. Первый этап – подготовительный. На этом этапе молекулы ди- и полисахаридов, жиров, белков распадаются на мелкие молекулы – глюкозу, глицерин и жирные кислоты, аминокислоты; крупные молекулы нуклеиновых кислот – на нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты. Второй этап – бескислородный, или неполный. Он называется также анаэробным дыханием (гликолизом) или брожением. Термин «брожение» обычно применяют по отношению к процессам, протекающим в клетках микроорганизмов или растений. Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению. Например, в мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы пировиноградной кислоты (С3Н4О3), которые затем восстанавливаются в молочную кислоту (С3Н6О3). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ. В суммарном виде это выглядит так:С6Н12О6 + 2Н3РО4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение): С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т. д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40 % энергии, а остальная рассеивается в виде теплоты. Третий этап энергетического обмена – стадия аэробного дыхания, или кислородного расщепления. Реакции этой стадии энергетического обмена также катализируются ферментами. При доступе кислорода к клетке образовавшиеся во время предыдущего этапа вещества окисляются до конечных продуктов – Н2О и СО2. Кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее в молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так: 2С3Н6O3 + 6O2 + 36Н3РО4 + 36АДФ → 6СО2 + 38Н2О + 36АТФ Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание. Контрольные вопросы: 1. Охарактеризовать процесс фотосинтеза. Какова его биологическая роль? 2. Дать понятие анаэробного и аэробного гликолиза. Лекция №4. Размножение организмов. Цель теоретического занятия: рассмотреть различные формы размножения живых организмов, хромосомные наборы соматических и половых клеток. Время: 2 часа Учебно-материальное обеспечение: 1.Компьютер, экран, проектор; 2. Электронная презентация к занятию. Учебные вопросы: 1. Различные типы размножения. 2.Хромосомные наборы соматических и половых клеток. Известны различные формы размножения, но все они могут быть объединены в два типа – половое и бесполое. Половым размножением называют смену поколений и развитие организмов на основе специализированных – половых – клеток, образующихся в половых железах. В эволюции полового размножения наиболее прогрессивным оказался способ, благодаря которому новый организм развивается в результате слияния двух половых клеток, образованных разными родителями. Однако у беспозвоночных животных нередко сперматозоиды и яйцеклетки формируются в теле одного организма. Такое явление – обоеполость – называется гермафродитизмом. Известны случаи, когда новый организм не обязательно появляется в результате слияния половых клеток. У некоторых видов животных и растений наблюдается развитие из неоплодотворенной яйцеклетки. Такое размножение называется девственным или партеногенетическим. Бесполое размножение характеризуется тем, что новая особь развивается из неполовых, соматических (телесных) клеток. Рассмотрим подробнее оба типа размножения. Бесполое размножение При бесполом размножении новый организм может возникнуть из одной клетки или из нескольких неполовых (соматических) клеток материнской особи. Многие простейшие (амеба, эвглена зеленая и др.), одноклеточные водоросли (хламидомонада) размножаются путем обычного митотического деления клетки. Другим одноклеточным – некоторым низшим грибам, водорослям (хлорелла), животным, например малярийному плазмодию (возбудителю малярии), свойственно спорообразование. Оно заключается в том, что клетка распадается на большое число особей, равное количеству ядер, заранее образованных в родительской клетке в результате многократного деления ее ядра. Рисунок 1. Почкование дрожжевых грибов Как у одноклеточных, так и у многоклеточных организмов способом бесполого размножения служит также почкование. Например, у дрожжевых грибов (рис. 1) и некоторых инфузорий (сосущие инфузории) почкование заключается в том, что на материнской клетке первоначально образуется небольшой бугорок, содержащий ядро, – почка. Она растет, достигает размеров, близких к материнским, и затем отделяется, переходя к самостоятельному существованию. У многоклеточных (пресноводная гидра) почка состоит из группы клеток обоих слоев стенки тела. Почка растет, удлиняется, на переднем ее конце появляется ротовое отверстие, окруженное щупальцами. Почкование завершается образованием маленькой гидры, которая затем отделяется от материнского организма (рис. 2). У многоклеточных животных бесполое размножение осуществляется также путем деления тела на две части (медузы, кольчатые черви) или же путем фрагментации тела на несколько частей (плоские черви, иглокожие). Из таких частей развиваются полноценные особи. Рисунок 2.Почкование у гидры: 1 – материнский организм, 2 – почки У растений широко распространено вегетативное размножение, то есть размножение частями тела: черенками, усами, клубнями (рис.3). Так, у картофеля для размножения служат видоизмененные подземные части стебля – клубни. У жасмина, ивы легко укореняются побеги – черенки. С помощью черенков размножают виноград, смородину. Длинные ползучие побеги земляники – усы – образуют почки, которые, укореняясь, дают начало новому растению. Для вегетативного размножения используют также корень. В садоводстве с помощью черенков из боковых корней размножают малину, вишню, сливу, розы. Корневыми клубнями размножаются георгины. Видоизменение подземной части стебля – корневище – также образует новые растения. Например, осот за счет корневища может дать до 1800 новых особей на 1 м2 почвы. Рисунок 3. Вегетативное размножение растений: А – ползучими побегами (усами), Б – подземными клубнями, В – корневище осоки, Г – части побегов элодеи Бесполое размножение, эволюционно возникшее раньше полового, – весьма эффективный процесс. С его помощью в благоприятных условиях численность вида может быстро увеличиваться. Однако при любых формах бесполого размножения все потомки имеют генотип, идентичный материнскому. Вспомните митоз. В интерфазе происходит абсолютно точное удвоение генетического материала клетки, в результате которого при делении каждая из дочерних клеток получает наследственную информацию, сходную с таковой у материнской клетки. Поскольку все соматические клетки организма возникли путем митоза, а именно из них и развивается новый организм, становится понятным, почему все особи при бесполом размножении генетически сходны – оно не сопровождается повышением генетического разнообразия. Новые признаки, которые могут оказаться полезными при изменении условий среды, появляются только в результате относительно редких мутаций. Половое размножение Половое размножение имеет очень большие эволюционные преимущества по сравнению с бесполым. Это обусловлено тем, что генотип потомков возникает путем комбинации генов, принадлежащих обоим родителям. В результате повышаются возможности организмов в приспособлении к условиям окружающей среды. Поскольку новые комбинации осуществляются в каждом поколении, то приспособленными к новым условиям существования может оказаться гораздо большее количество особей, чем при бесполом размножении. Появление новых комбинаций генов обеспечивает более успешное и быстрое приспособление вида к меняющимся условиям обитания. Таким образом, сущность полового размножения заключается в объединении в наследственном материале потомка генетической информации из двух разных источников – родителей. У обоеполых животных и растений существуют приспособления, предотвращающие самооплодотворение. У плоских червей – планарий и у кольчатых – дождевых червей наблюдается спаривание между разными особями. У растений самоопыление исключается в случае их однополости. Когда же развиваются обоеполые цветки, тычинки и пестики созревают неодновременно, что и делает возможным только перекрестное опыление. Развитие половых клеток (гаметогенез). В половых железах развиваются половые клетки – гаметы. Мужские – сперматозоиды – в семенниках и женские – яйцеклетки (или яйца) – в яичниках. В первом случае путь их развития называют сперматогенезом, во втором – овогенезом (от лат. ovum – яйцо). Разделение полов имеет очевидные эволюционные преимущества. Раздельнополость создает возможность специализации родителей по строению и поведению, а возникновение нового эволюционного фактора – полового отбора – способствует развитию различных форм заботы о потомстве. При этом самцы могут играть большую роль в охране семьи, охоте, а также участвовать в конкуренции за самку – половом отборе. В процессе образования половых клеток – как сперматозоидов, так и яйцеклеток – выделяют ряд стадий (рис. 1). Первая стадия – период размножения, в котором первичные половые клетки делятся путем митоза, в peзультате чего увеличивается их количество. При сперматогенезе размножение первичных половых клеток очень интенсивное, оно начинается с наступления половой зрелости и протекает в течение всего репродуктивного периода, то есть времени, когда животное может участвовать в половом размножении, и постепенно затухает лишь к старости. Размножение женских первичных половых клеток у низших позвоночных также продолжается почти всю жизнь. У млекопитающих, в том числе и у человека, эти клетки с наибольшей интенсивностью размножаются лишь во внутриутробном периоде развития плода и сохраняются в состоянии покоя до полового созревания. Рисунок 1. Схема гаметогенеза. Второй период – период роста. У незрелых мужских гамет он выражен нерезко. Их размеры увеличиваются незначительно. Напротив, будущие яйцеклетки – овоциты – увеличиваются в размерах иногда в сотни, а чаще в тысячи и даже миллионы раз. У одних животных овоциты растут очень быстро – в течение нескольких дней или недель, у других видов рост продолжается месяцы и годы. Рост овоцитов осуществляется за счет веществ, образуемых другими клетками организма. Например, у рыб, амфибий и в большей степени у рептилий и птиц основную массу яйца составляет желток. Он синтезируется в печени, в особой растворимой форме переносится кровью в яичник, проникает в растущие овоциты и откладывается там в виде желточных пластинок. Кроме того, в самой будущей половой клетке синтезируются многочисленные белки и большое количество разнообразных РНК: транспортных, рибосомальных и информационных. Желток – совокупность питательных веществ (жиров, белков, углеводов, витаминов и др.), необходимых для питания развивающегося зародыша, а РНК обеспечивает синтез белков на ранней стадии развития, когда собственная наследственная информация еще не используется. Следующий период – период созревания, или мейоз. Клетки, вступающие в период созревания, содержат диплоидный набор хромосом и уже удвоенное количество ДНК (2n4c). В процессе полового размножения у организмов любого вида из поколения в поколение сохраняется свойственное ему число хромосом. Это достигается тем, что перед слиянием половых клеток – оплодотворением – в процессе созревания в них уменьшается (редуцируется) число хромосом, то есть из диплоидного набора (2n) образуется гаплоидный (1n). Закономерности прохождения мейоза в мужских и женских половых клетках по существу одинаковы. Поэтому сначала рассмотрим общие черты этого процесса, а затем остановимся на конкретных особенностях, характерных для сперматогенеза и овогенеза. Контрольные вопросы: 1. Охарактеризовать различные типы размножения живых организмов. 2.Каковыхромосомные наборы соматических и половых клеток? 3. Какой процесс называется процессом оплодотворения? Лекция №5.Индивидуальное развитие организма Цель теоретического занятия: рассмотреть стадии индивидуального развития организма. Время: 2 часа Учебно-материальное обеспечение: 1.Компьютер, экран, проектор; 2. Электронная презентация к занятию. Учебные вопросы: Индивидуальное развитие организмов (онтогенез) Стадии онтогенеза. Индивидуальное развитие организмов (онтогенез) Развитие организма начинается с одноклеточной стадии. Оплодотворенное яйцо – клетка и в то же время уже организм на самой ранней стадии его развития. В результате многократных делений одноклеточный организм превращается в многоклеточный. Возникшее при оплодотворении путем слияния сперматозоида и яйцеклетки ядро обычно уже через несколько минут начинает делиться, вместе с ним делится и цитоплазма. Образующиеся клетки, еще сильно отличающиеся от клеток взрослого организма, называются бластомерами (от греч. blastos – зародыш, meros – часть). При делении бластомеров размеры их не увеличиваются, поэтому процесс деления носит название дробления. Вдавления цитоплазмы, образующиеся при делении цитоплазмы одной клетки на две, получили название борозд дробления. В период дробления накапливается клеточный материал для дальнейшего развития. Первая борозда дробления проходит в меридиональной плоскости, соединяющей оба полюса – вегетативный и анимальный, и делит зиготу на две одинаковые клетки. Это стадия двух бластомеров. Вторая борозда также меридиональна, но перпендикулярна первой. Она разделяет оба бластомера, возникших в результате первого деления, надвое – образуются четыре сходных бластомера. Следующая, третья, борозда дробления – широтная. Она пролегает несколько выше экватора и делит все четыре бластомера сразу на восемь клеток. В дальнейшем борозды дробления чередуются: вслед за широтными идут меридиональные, затем вновь широтные и т. д. По мере увеличения числа клеток деление их становится неодновременным. Бластомеры все дальше и дальше отходят от центра зародыша, образуя полость. В конце дробления зародыш принимает форму пузырька со стенкой, образованной одним слоем клеток, тесно прилегающих друг к другу. Внутренняя полость зародыша, первоначально сообщавшаяся с внешней средой через щели между бластомерами, в результате их плотного смыкания становится совершенно изолированной. Эта полость носит название первичной полости тела – бластоцеля. Завершается дробление образованием однослойного многоклеточного зародыша – бластулы. Все клетки в бластуле имеют диплоидный набор хромосом, одинаковы по строению и отличаются друг от друга главным образом пo количеству содержащегося в них желтка. Такие клетки, не имеющие признаков специализации и неприспособленные для выполнения определенных функций, называют неспециализированными, недифференцированными, клетками. Рисунок 1 Гаструляция у ланцетника, А – бластула, Б, В, Г – гаструляция, 1 – эктодерма, 2 – энтодерма Еще одна важная черта дробления – то, что цитоплазма зиготы при делении не перемещается. Эти и ряд других различий в организации цитоплазмы яйца создают основу для дифференцировки клеток, вследствие которой из разных клеток бластулы образуются те или иные органы и ткани. Бластула, как правило, состоящая из большого числа бластомеров (например, у ланцетника из 3000 клеток), в процессе развития переходит в новую стадию, которая называется гаструлой (от греч. gaster – желудок). Зародыш на этой стадии состоит из явно разделенных пластов клеток, так называемых зародышевых листков: наружного, или эктодермы (от греч. ectos – находящийся снаружи), и внутреннего, или энтодермы (от греч. еntos – находящийся внутри). Совокупность процессов, приводящих к образованию гаструлы, называется гаструляцией. Рисунок 2 Зародышевые листки У многоклеточных животных, кроме кишечнополостных, параллельно с гаструляцией или, как у ланцетника, вслед за ней возникает и третий зародышевый листок – мезодерма (от греч. mesos – находящийся посередине), который представляет собой совокупность клеточных элементов, расположенных между экто- и энтодермой в первичной полости тела. Вследствие появления мезодермы зародыш становится трехслойным (рис.2). Таким образом, сущность процесса гаструляции заключается в перемещении клеточных масс. Клетки зародыша практически не делятся и не растут. Однако на этой стадии начинается использование генетической информации клеток зародыша, появляются первые признаки дифференцировки. Дифференцировка, или дифференцирование, – это процесс возникновения и нарастания структурных и функциональных различий между отдельными клетками и частями зародыша. С морфологической точки зрения дифференцирование выражается в том, что образуются несколько сотен типов клеток специфического строения, отличающихся друг от друга. С биохимической точки зрения специализация клеток заключается в синтезе определенных белков, свойственных только данному типу клеток. В коже, в клетках эпителия, синтезируется кератин, в эритроцитах – гемоглобин, в клетках островковой ткани поджелудочной железы – инсулин и т. д. Биохимическая специализация клеток обеспечивается дифференциальной активностью генов, то есть в клетках разных зародышевых листков – зачатков определенных органов и систем – начинают функционировать разные группы генов. При дальнейшей дифференцировке клеток, входящих в состав зародышевых листков, из эктодермы образуются нервная система, органы чувств, эпителий кожи, эмаль зубов; из энтодермы – эпителий средней кишки, пищеварительные железы – печень и поджелудочная железа, эпителий жабр и легких; из мезодермы – мышечная ткань, соединительная ткань, кровеносная система, почки, половые железы и др. У разных видов животных одни и те же зародышевые листки дают начало одним и тем же органам и тканям. Это значит, что они гомологичны. Гомология зародышевых листков подавляющего большинства животных – одно из доказательств единства животного мира. Контрольные вопросы: Какие стадии индивидуального развитие организма вы знаете? Охарактеризовать процесс дифференцировки клеток. Лекция№6.Законы Менделя Цель теоретического занятия: дать понятие наследственности и изменчивости организмов, рассмотреть первый закон Менделя – закон единообразия первого поколения гибридов и второй закон (расщепления). Время: 2 часа Учебно-материальное обеспечение: 1.Компьютер, экран, проектор; 2. Электронная презентация к занятию. Учебные вопросы: 1-й закон Менделя – закон единообразия первого поколения гибридов. 2-й закон Менделя (закон расщепления). Генетика изучает два фундаментальных свойства живых организмов – наследственность и изменчивость. Обычно наследственность определяется как свойство родителей передавать свои признаки, свойства и особенности развития следующему поколению. Благодаря этому каждый вид животных или растений сохраняет на протяжении поколений характерные для него черты. Клетки, через которые осуществляется преемственность поколений, – специализированные половые при половом размножении и клетки тела – соматические при бесполом – несут в себе не сами признаки и свойства будущих организмов, а только задатки их развития. Эти задатки получили название генов. Геном является участок молекулы ДНК (или участок хромосомы), определяющий возможность развития отдельного элементарного признака, или синтез одной белковой молекулы. Совокупность всех генов одного организма называют генотипом. В пределах одного вида все организмы не похожи друг на друга. Эта изменчивость хорошо видна, например, в пределах вида Человек разумный, каждый представитель которого имеет свои индивидуальные особенности. Подобная индивидуальная изменчивость существует у организмов любого вида животных и растений. Таким образом, изменчивость – это свойство организмов, как бы противоположное наследственности. Изменчивость заключается в изменении наследственных задатков – генов и, как следствие, в изменении их проявления в процессе развития организмов. Существуют разные типы изменчивости. Изучением причин, форм изменчивости и ее значения для эволюции также занимается генетика. При этом исследователи имеют дело не непосредственно с генами, а с результатами их проявления – признаками или свойствами. Поэтому закономерности наследственности и изменчивости изучают, наблюдая в ряду поколений за признаками организмов. Совокупность всех признаков организмов называют фенотипом. Первый закон Менделя – закон единообразия первого поколения гибридов. Для иллюстрации первого закона Менделя – закона единообразия первого поколения – воспроизведем опыты ученого по моногибридному скрещиванию растений гороха. Скрещивание двух организмов называют гибридизацией; потомство от скрещивания двух особей с различной наследственностью называют гибридным, а отдельную особь – гибридом. Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов одного признака, развитие которого обусловлено парой аллельных генов. Например, признак – цвет семян, взаимоисключающие варианты – желтый или зеленый. Все остальные признаки, свойственные данным организмам, во внимание не принимаются и в расчетах не учитываются. Если скрестить растения гороха с желтыми и зелеными семенами, то у всех полученных в результате этого скрещивания потомков – гибридов – семена будут желтыми. Такая же картина наблюдается при скрещивании растений, имеющих гладкую и морщинистую форму семян, а именно у гибридов семена будут гладкими. Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один. Второй признак как бы исчезает, не развивается. Преобладание у гибрида признака одного из родителей Г. Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным (от лат. dominantis – господствующий); противоположный, то есть подавляемый, признак – рецессивным (от лат. recessus – отступление, удаление). Доминантный признак принято обозначать прописной буквой, например «А». Рецессивный – строчной – «а». Теперь можно сделать вывод: если в генотипе организма (зиготы) есть два одинаковых аллельных гена, то есть два абсолютно идентичных по последовательности нуклеотидов гена, такой организм называют гомозиготным. Организм может быть гомозиготным по доминантным (АА или ВВ) или по рецессивным генам (аа или bb). Если же аллельные гены отличаются друг от друга по последовательности нуклеотидов, например один из них доминантный, а другой рецессивный (Аа, Вb), такой организм носит название гетерозиготного. Закон единообразия гибридов первого поколения – первый закон Менделя – называют также законом доминирования, так как все особи первого поколения имеют одинаковое проявление признака. Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей. Второй закон Менделя (закон расщепления) Если потомков первого поколения, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определенном числовом соотношении: 3/4 особей будут иметь доминантный признак, 1/4 – рецессивный. Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть – рецессивный, называется расщеплением. Следовательно, расщепление – это распределение доминантных и рецессивных признаков среди потомства в определенном числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении. Таким образом, второй закон Менделя можно сформулировать следующим образом: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1. Рисунок 1. 25% гомозиготных доминантных; 50% гетерозиготных; 25% гомозиготных рецессивных. При неполном доминировании в потомстве гибридов (F2) расщепление по генотипу и фенотипу совпадает (1:2:1). Контрольные вопросы: 1.В чем сущность закона единообразия первого поколения гибридов (1-й закон Менделя)? 2.В чем сущность и значение 2-го закона Менделя (закона расщепления)? Лекция №7. Генетика пола. Цель теоретического занятия: дать понятие генотипа, генетики пола,рассмотреть вопросы наследование признаков, сцепленных с полом. Время: 2 часа Учебно-материальное обеспечение: 1.Компьютер, экран, проектор; 2. Электронная презентация к занятию. Учебные вопросы: Генетика пола. Наследование признаков, сцепленных с полом. Гены представляют собой структурные и функциональные единицы наследственности. В перечисленных выше примерах гены ведут себя действительно как отдельные единицы, то есть каждый из них определяет развитие одного какого-то признака, независимого от других. Поэтому может сложиться впечатление, что генотип – механическая совокупность генов, а фенотип – мозаика отдельных признаков. На самом деле это не так. Если и отдельная клетка, и организм являются целостными системами, где все биохимические и физиологические процессы строго согласованы и взаимосвязаны, то прежде всего потому, что генотип – это система взаимодействующих генов. Взаимодействуют друг с другом как аллельные, так и неаллельные гены, расположенные в различных локусах одних и тех же и разных хромосом. Генетика пола. Пол у животных чаще всего определяется в момент оплодотворения. В этом случае важнейшая роль в генетическом определении пола принадлежит хромосомному набору зиготы. Вспомним, что в наборе хромосом зиготы содержатся парные – гомологичные хромосомы, одинаковые по форме, размерам и содержащие одинаковые гены. На рисунке 3 изображен хромосомный набор человека – женщины и мужчины. В женском кариотипе все хромосомы парные. В мужском кариотипе всегда имеется одна крупная равноплечая непарная хромосома, не имеющая гомолога, и маленькая палочковидная хромосома, встречающаяся только в кариотипе мужчин. Таким образом, кариотип человека содержит 22 пары хромосом, одинаковых у мужского и женского организма, и одну пару хромосом, по которой различаются оба пола. Хромосомы, одинаковые у обоих полов, называют аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга, называют половыми. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин имеется X-хромосома и одна Y-хромосома. При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. При этом все яйцеклетки имеют по одной Х-хромосоме. Пол, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным и обозначается XX. При сперматогенезе получаются гаметы двух сортов: половина несет Х-хромосому, половина – Y-хромосому. Пол, который формирует гаметы, неодинаковые по половой хромосоме, называют гетерогаметным и обозначают как XY. У человека, дрозофилы и ряда других организмов гомогаметен женский пол; у бабочек, пресмыкающихся, птиц – мужской. Кариотип петуха обозначают как XX, а кариотип курицы – XY. У человека решающую роль в определении пола играет Y-хромосома. Если яйцеклетка оплодотворяется сперматозоидом, несущим Х-хромосому, развивается женский организм. Следовательно, женщины имеют одну Х-хромосому от отца и одну Х-хромосому от матери. Если яйцеклетка оплодотворяется сперматозоидом, несущим Y-хромосому, развивается мужской организм. Мужчина (XY) получает Х-хромосому только от матери. Этим обусловлена особенность наследования генов, расположенных в половых хромосомах. Наследование признаков, сцепленных с полом. Наследование признаков, гены которых находятся в Х- или Y-хромосомах, называют наследованием, сцепленным с полом. Таким образом, сцеплением генов с полом называют локализацию генов в половой хромосоме. Распределение этих генов в потомстве должно соответствовать распределению половых хромосом в мейозе и их сочетанию при оплодотворении. Рассмотрим наследование генов, расположенных в Х-хромосоме. Следует иметь в виду, что в половых хромосомах могут находиться и гены, не участвующие в развитии половых признаков. Так, Х-хромосома дрозофилы включает ген, от которого зависит окраска глаз. Х-хромосома человека содержит ген, определяющий свертываемость крови (Н). Его рецессивная аллель (h) вызывает тяжелое заболевание – гемофилию. В этой же хромосоме находятся гены, обусловливающие слепоту к красному и зеленому цвету (дальтонизм), форму и размер зубов, синтез ряда ферментов и т. д. В отличие от генов, локализованных в аутосомах, при сцеплении с полом может проявиться и рецессивный ген, имеющийся в генотипе в единственном числе. Это происходит в тех случаях, когда рецессивный ген, сцепленный с Х-хромосомой, попадает в гетерогаметный организм. При кариотипе XY рецессивный ген в Х-хромосоме проявляется фенотипически, поскольку Y-хромосома негомологична Х-хромосоме и не содержит доминантной аллели. Наследование сцепленного с полом гена дальтонизма изображено в схеме (на рисунке 1 не показаны аутосомы, поскольку по ним нет различий между мужским и женским организмом). Рисунок 1. Наследование гемофилии представлено на следующей схеме на примере брака женщины – носительницы гена гемофилии (XHXh) со здоровым мужчиной. Рисунок 2. Н – нормальная свертываемость, h – гемофилия. Половина мальчиков от такого брака будет страдать гемофилией. При локализации гена в Y-хромосоме признаки передаются только от отца к сыну. Контрольные вопросы: Дать понятие генетики пола. Каковы способы наследования признаков, сцепленных с полом? Лекция № 8.Наследственная и модификационная изменчивость. Цель теоретического занятия:рассмотреть вопросы модификационной и мутационной изменчивости. Время: 2 часа Учебно-материальное обеспечение: 1.Компьютер, экран, проектор; 2. Электронная презентация к занятию. Учебные вопросы: 1. Модификационная изменчивость. 2. Мутационная изменчивость. Модификационная изменчивость. На проявление гена значительное влияние оказывают другие гены, то есть выражение гена в виде признака зависит от генотипической среды. На развитие признака влияют и регуляторные системы организма, в первую очередь эндокринная. Такие признаки у петухов, как яркое оперение, большой гребень, характер пения и тембр голоса, обусловлены действием мужского полового гормона. Введение же петухам женских половых гормонов включает гены, обусловливающие синтез в печени белков, входящих в состав желтка яйцеклетки. В норме эти гены «работают» только у кур. Следовательно, внутренняя среда организма также оказывает сильное влияние на проявление генов в форме признака. Рисунок 1.Фенотипическое изменение окраски шерсти гималайского кролика под влиянием различных температур. Каждый организм развивается и обитает в определенных внешних условиях, испытывая на себе действие факторов внешней среды – колебаний температуры, освещенности, влажности, количества и качества пищи, а также вступает во взаимоотношения с другими организмами. Все эти факторы могут изменять морфологические и физиологические свойства организмов, то есть их фенотип. Если у гималайского кролика (рис. 1-А) на спине выщипать белую шерсть и поместить его в холод (или наложить холодную повязку) (рис. 1-Б), на этом месте вырастет черная шерсть (рис. 1-В). Если черную шерсть удалить и наложить теплую повязку, вырастет белая шерсть. При выращивании гималайского кролика при температуре 30 °С вся шерсть у него будет белая. У потомства двух таких белых кроликов, выращенного в нормальных условиях, будет обычное распределение пигмента. Таким образом, изменения признаков, вызванные действием факторов внешней среды, не наследуются. Отметим еще одну особенность изменчивости, вызванную факторами внешней среды. Листья одного и того же растения стрелолиста (рис. 2) или водяного лютика имеют разную форму в зависимости от того, находятся ли они в воде или в воздушной среде. У всех стрелолистов в воде будут длинные тонкие листья, а у всех лютиков – изрезанные. Точно так же под действием ультрафиолетовых лучей у всех людей, если они не альбиносы, возникает загар – накопление в коже гранул пигмента меланина, хотя и в неодинаковой степени. Таким образом, на действие определенного фактора внешней среды каждый вид организмов реагирует специфически и реакция (в форме изменения признака) оказывается сходной у всех особей данного вида. Это обстоятельство позволило Ч. Дарвину назвать ненаследственную изменчивость групповой или определенной. Вместе с тем изменчивость признака под влиянием условий внешней среды не беспредельна. . Рисунок.2.Стрелолист образует разные по форме листья при развитии в воздушной среде (1), на поверхности воды (2) и в воде (3) К наследственной изменчивости относят такие изменения признаков организма, которые определяются генотипом и сохраняются в ряду поколений. Иногда это крупные, хорошо заметные изменения, например коротконогость у овец (рис. 1), отсутствие оперения у кур (рис. 2, 3), раздвоенные пальцы у кошек, отсутствие пигмента (альбинизм), короткопалость у человека (рис. 4). Вследствие внезапных изменений, стойко передающихся по наследству, возникли карликовый сорт душистого горошка, растения с махровыми цветками. Чаще же это мелкие, едва заметные уклонения от нормы. Наследственные изменения генетического материала называют мутациями. Дарвин называл наследственную изменчивость неопределенной, индивидуальной изменчивостью, подчеркивая тем самым ее случайный, ненаправленный характер и относительную редкость возникновения. Мутационная изменчивость. Мутации возникают вследствие изменения структуры гена (то есть последовательности нуклеотидов в ДНК) или хромосом и служат единственным источником генетического разнообразия внутри вида. Благодаря постоянному мутационному процессу возникают различные варианты генов, составляющие резерв наследственной изменчивости. Однако бесконечное разнообразие живых организмов, уникальность каждого генотипа обусловлена комбинативной изменчивостью – перегруппировкой хромосом в процессе полового размножения и участков хромосом в процессе кроссинговера. При этом типе изменчивости структура самих генов и хромосом остается такой же, но меняются сочетания наследственных задатков и характер их взаимодействия в генотипе. Рисунок 1. Анконская мутация у овец. Справа и в центре – коротконогие баран и овца, слева – овца с нормальными ногами |