Главная страница
Навигация по странице:

  • 9.2. Показатели надежности систем

  • Наработка до отказа

  • 9.3. Показатели надежности восстанавливаемых систем

  • КИПиА. Контрольно_измерительные_приборы_и_автоматика_ЛЕКЦИИ. Курс лекций по направлению контрольноизмерительные приборы и автоматика


    Скачать 6 Mb.
    НазваниеКурс лекций по направлению контрольноизмерительные приборы и автоматика
    АнкорКИПиА
    Дата09.01.2023
    Размер6 Mb.
    Формат файлаpdf
    Имя файлаКонтрольно_измерительные_приборы_и_автоматика_ЛЕКЦИИ.pdf
    ТипКурс лекций
    #878450
    страница28 из 42
    1   ...   24   25   26   27   28   29   30   31   ...   42
    Готовность – свойство системы выполнять возложенные на нее функции в любой произвольно выбранный момент времени в установившемся процессе эксплуатации.

    345
    Готовность определяется как безотказностью, так и восстанавливаемостью системы.
    Готовность системы определяется ее безотказностью и восстанавливаемостью, которые в свою очередь, как было показано выше, являются вероятностными характеристиками системы. Таким образом, готовность системы также является вероятностной характеристикой.
    Под готовностью будем понимать вероятность того, что система в рассматриваемый момент времени готова для выполнения предназначенных ей функций, т. е. система должна быть готова к выполнению предназначенных ей функций к началу рабочего интервала времени. Для ряда автоматических систем связи, защиты, блокировки обычно требуется постоянная готовность.
    В статистическом смысле общим показателем готовности может служить доля систем, готовых для использования в течение требуемого рабочего интервала времени.
    В общем виде готовность системы определяется через вероятность отказа Q и невосстанавливаемость Q
    b по следующей формуле:
    Рг = 1 – Q
    b
    × Q
    Это уравнение показывает, что готовность системы при фиксированной одной характеристике безотказности или восстанавливаемости может быть повышена за счет увеличения другой. В частности, при низкой безотказности системы готовность может быть увеличена соответствующим увеличением восстанавливаемости.
    Если восстановление систем не производится, то, как следует из уравнения, готовность определяется безотказностью системы.
    9.2. Показатели надежности систем
    Анализ надежности автоматических систем и ее составляющих может быть разделен на две задачи: статическую и динамическую. Надежность системы (при заданной схеме и конструкции) в основном зависит от двух параметров:
     требуемого времени безотказной работы,
     условий эксплуатации системы.
    Когда эти параметры фиксируются, то рассматривается статическая задача, которая базируется на основных положениях теории вероятностей.

    346
    При статическом подходе надежность характеризуется числом подобно тому, как динамические звенья автоматической системы в установившемся режиме характеризуются коэффициентом передачи. Указанная аналогия позволит пользоваться при анализе надежности системы ее структурными представлениями, что наряду с наглядностью упрощает также составление уравнений надежности и их анализ.
    Когда требуемое значение интервала времени безотказной работы или условия эксплуатации системы не фиксируются при анализе надежности, возникает динамическая задача. Основным математическим аппаратом при решении динамической задачи наряду с классической теорией вероятностей является теория случайных процессов. Основные зависимости и уравнения динамической задачи становятся более сложными, чем в статической задаче, поэтому решать ее удобно с помощью преобразований Лапласа,
    Меллина, z–преобразования.
    Применение для решения динамических задач теории надежности указанных преобразований позволяет так же, как и в статической задаче, пользоваться структурными методами. Обычно с решением динамической задачи связывается надежность восстанавливаемых систем.
    Динамическая задача дает возможность также разработать критерии надежности систем или ее отдельных составляющих. Учитывая, что надежность системы является вероятностной характеристикой, для разработки критериев можно использовать функции распределения вероятностей в зависимости от рассматриваемого динамического параметра или моменты функций распределения вероятностей.
    Функции распределения вероятностей представляют наиболее полную информацию о надежности системы. При этом в зависимости от целей исследования, особенностей рассматриваемой системы могут применяться интегральные, дифференциальные или условные функции распределения вероятностей.
    Показателями надежности называются количественные характеристики одного или нескольких свойств, составляющих надежность системы. Выбор тех или иных показателей продиктован видом исследуемой системы. В теории надежности различают восстанавливаемые и невосстанавливаемые системы. К невосстанавливаемым относят системы, восстановление которых непосредственно после отказа считается нецелесообразным или невозможным, а к восстанавливаемым – в которых проводится восстановление непосредственно после отказа.
    Для невосстанавливаемых систем, как правило, ограничиваются показателями безотказности. Эти же показатели описывают системы, в принципе подлежащие восстановлению после отказов, но поведение которых целесообразно рассматривать до

    347 момента первого отказа. К их числу, например, можно отнести системы, чьи отказы чрезвычайно редки и вызывают особо тяжелые последствия.
    К показателям надежности невосстанавливаемых систем относятся:

    Интегральный закон распределения времени безотказной работы;

    Интегральный закон распределения времени до отказа;

    Дифференциальный закон распределения времени исправной работы устройства до первого отказа;

    Среднее время безотказной работы (средняя наработка до отказа);

    Интенсивность отказов.
    Прежде чем перейти к показателям надежности, необходимо ввести понятие наработки до отказа.
    Наработка до отказа (Т) – случайная величина, представляющая собой длительность работы невосстанавливаемой системы до наступления отказа. Для большей части систем наработка до отказа измеряется единицами времени, но она может измеряться и числом включений, срабатываний, циклов. Очевидно, что для систем, работающих без отключений (кроме отказов), наработка до отказа совпадает с временем безотказной работы.
    Основным показателем для количественной оценки безотказности элемента, аппаратуры, приборов и АСУ является вероятность безотказной работы P(t) в заданном интервале времени наработки t.
    Например, Р (1000) = 0,99 означает, что из множества элементов данного вида 1% откажет раньше 1000 ч, или что для одного элемента его шансы проработать безотказно
    1000 ч составляют 99%. Чем меньше наработка, тем больше P(t). Показатель P(t) полностью определяет безотказность невосстанавливаемых элементов, но применим также и к восстанавливаемым элементам до первого отказа. Вероятность безотказной работы статистически определяется отношением числа элементов n i
    , безотказно проработавших до момента времени t, к числу элементов N работоспособных в начальный момент времени t = 0:
    P
    i
    *= n i
    / N
    При значительном увеличении числа элементов N статистическая вероятность
    P
    i
    * сходится к вероятности:

    348
    Р(t) = P{T > t} где T – наработка до отказа.
    Так как исправная работа и отказ – события противоположные, то они связаны очевидным соотношением:
    Q(t) = l – P(t) где Q(t) – вероятность отказа, или интегральный закон распределения случайной величины – времени работы до отказа.
    Статистическое значение вероятности отказа равно отношению числа отказавших элементов к начальному числу испытываемых элементов:
    Q
    i
    * = 1–n i
    / N= (N–n i
    ) / N
    Производная от вероятности отказа – f(t) = dQ(t) / dt= – dP(t)/dt есть дифференциальный закон, или плотность распределения случайной величины – времени исправной работы устройства до первого отказа и характеризует скорость снижения вероятности безотказной работы во времени.
    Среднее время безотказной работы Т
    ср представляет собой математическое ожидание времени работы устройства до отказа:
    dt
    t
    Р
    T
    ср



    0
    )
    (
    Статистическая формула для расчета Т
    ср




    N
    i
    i
    ср
    T
    N
    T
    1 1

    349 где T
    i
    – время безотказной работы I-го устройства;
    N – общее число элементов.
    Интенсивностью отказов (t) называют отношение плотности распределения времени исправной работы к вероятности безотказной работы невосстанавливаемого устройства, которая взята для одного и того же момента времени t:
    (t) = f(t) / P(t) = – dP / d(t!/P(t))
    Статистическая формула:
    (t)* = 2*(N
    1
    – N
    2
    ) / t*(N
    1
    + N
    2
    ) где N
    1
    – начальное количество исправных элементов;
    N
    2
    – количество исправных устройств через время t.
    Интенсивность отказов является наиболее удобной характеристикой безотказности систем и элементов. Как показывает опыт обработки статистических данных по эксплуатации различного оборудования, интенсивность отказов автоматических систем, а также отдельных элементов не может быть аппроксимирована аналитической зависимостью, соответствующей только одному теоретическому закону безотказности.
    Обработка большого количества информации об отказах автоматических систем позволила получить общую качественную форму зависимости интенсивности отказов от времени (рис. 9.1).
    На кривой, приведенной на рисунке 9.1 можно выделить три характерные области:
     начальных отказов П (область приработки);
     случайных отказов С (область зрелости);
     отказов вследствие старения И (область стрости).
    В области П интенсивность отказов сначала возрастает, достигает максимального значения и затем уменьшается.

    350
    Рисунок 9.1 Зависимость интенсивности отказов от времени
    Верхняя граница области определяется переходом интенсивности отказов зону постоянных значений. Начальные отказы могут быть обусловлены дефектами материалов, а также главным образом производственными дефектами и некоторыми другими факторами. Причины начальных отказов можно устранить опытной эксплуатацией системы, тренировкой в специальных условиях и режимах работы в течение периода времени, называемого периодом приработки. Продолжительность периода приработки, как показывает опыт, зависит от числа дефектов в системе.
    В области случайных отказов интенсивность отказов остается величиной постоянной и определяется сложностью системы, качеством применяемых элементов и режимам их работы, условиями эксплуатации и некоторыми другими факторами. Интервал времени, в течение которого интенсивность отказов постоянна, представляет основной рабочий период систем. В некоторых случаях он совпадает с минимальным значением производственного ресурса системы. Начало роста интенсивности отказов определяет верхнюю границу области случайных отказов и нижнюю границу отказов из–за изношенности. С некоторым допуском возникновение таких отказов может служить критерием долговечности. Следует иметь в виду, что для некоторых систем долговечность может быть меньше, чем среднее время безотказной работы системы, рассчитанное как величина, обратная интенсивности отказов. Это обстоятельство следует учитывать при назначении гарантийного срока работы системы.
    В области И интенсивность отказов сильно возрастает вследствие износа отдельных элементов. В восстанавливаемых системах в области И интенсивность отказов имеет колебательный характер, причем амплитуда и частота колебаний зависят от долговечности отдельных элементов и организации профилактических мероприятий при эксплуатации системы.
    В расчетах надежности необходимо учитывать законы распределения случайной величины – времени работы системы до возникновения отказа. Для дискретных случайных величин применяются биномиальный закон распределения и закон Пуассона.
    Для непрерывных случайных величин применяются экспоненциальный закон, гамма-

    351 распределение, закон Вейбулла, нормальный закон.
    Например, закон Пуассона определяет распределение числа m случайного события за время t. Используется для определения вероятности того, что в сложном устройстве за время t произойдет п отказов.
    Экспоненциальный закон применяется для анализа сложных изделий, прошедших период приработки, а также для систем, работающих в тяжелых условиях под воздействием механических и климатических нагрузок.
    Типовые элементы радиоэлектроники аппаратуры подчиняется экспоненциальному закону распределения времени отказов в области внезапных отказов с -кривой (рис. 9.2). Вероятностные характеристики отказов определяются формулами:
    ;
    1
    )
    (
    ;
    )
    (
    t
    t
    e
    t
    Q
    e
    t
    P







    Для экспоненциального закона Т
    ср
    = 0 = 1/ удовлетворяются начальные условия
    Р(0) = 1 и Q(0) = 0, т. е. отчет времени t начинается с момента выяснения исправности изделия.
    Графики изменения показателей надежности при экспоненциальном распределении представлены на рисунке 9.2.
    Рисунок 9.2. Показатели надежности при экспоненциальном (А) и нормальном (Б) законе
    распределения времени безотказной работы
    Основным характерным свойством экспоненциального распределения является то, что вероятность безотказной работы системы на любом интервале времени не зависит от длины этого интервала и не зависит от времени, предшествующей работы системы, т. е. от ее «возраста».

    352
    Так как для экспоненциального распределения характерно постоянство интенсивности отказов во времени, то область применения этого закона – системы и элементы, где можно не учитывать ни период приработки, и участок старения и износа
    (например, многие средства вычислительной техники и регулирования).
    Нормальный закон распределения времени исправной работы изделия применяется дли области И -кривой (рис. 9.1). 3акон применяется, когда отказы системы зависят от большого числа однородных по своему влиянию факторов в процессах износа, старения.
    Отчет времени t при нормальном законе ведут с начала эксплуатации системы.
    Интенсивность отказов монотонно возрастает:
    dt
    e
    t
    P
    t
    T
    t
    ср





    0 2
    )
    (
    2 2
    2 1
    1
    )
    (



    где  – среднеквадратичное отклонение времени безотказной работы системы.
    Графики изменения показателей надежности при нормальном распределении представлены на рисунке 9.2.
    Нормальное распределение, в принципе, описывает поведение случайных величин в диапазоне от (– ; + ), но т. к. наработка до отказа является неотрицательной величиной, то используют усеченное нормальное распределение.
    Распределение Вейбулла–Гнеденко применяется для описания надежности ряда электронных и механических технических средств, включая период приработки. Это двухпараметрическое распределение, где параметр k определяет вид плотности распределения, m – его масштаб. Так, при k = 1 распределение Вейбулла совпадает с экспоненциальным, когда интенсивность отказов постоянна; при k > 1 интенсивность отказов возрастет; при k < 1 интенсивность отказов убывает. Функция надежности при распределении Вейбулла имеет вид:
    9.3. Показатели надежности восстанавливаемых систем
    После каждого отказа восстанавливаемой системы следует ее восстановление,
    k
    mt
    e
    t
    P


     1
    )
    (

    353 проводимое заменой отказавшего элемента на идентичный работоспособный или проведением ремонтных операций. Так же, как и наработка до первого отказа у невосстанавливаемых системы, моменты наступления отказов восстанавливаемой системы являются случайными. Также случайной является и продолжительность работ по проведению восстановления, но время восстановления, как правило, значительно меньше времени между отказами, поэтому им пренебрегают. На рисунке 9.3. представлен график функционирования восстанавливаемой системы (элемента).
    Рисунок 9.3. График функционирования восстанавливаемой системы:
    t
    1
    , t
    2
    , t
    n
    – моменты времени, в течение которых происходит отказ и восстановление;
    k
    1
    , k
    2
    , k
    n
    – наработки между отказами.
    Последовательность отказов, происходящих один за другим в случайные моменты времени, носит название потока отказов. Понятие потока отказов является одним из основных при рассмотрении систем с восстановлением. Поток отказов задается двумя способами: первый способ заключается в изучении некоторого дискретного случайного процесса, заданного числом отказов на промежутке времени (0; t); второй способ, заключается в изучении последовательности непрерывных случайных наработок между отказами. В том и другом случае пренебрегают продолжительность восстановления системы, а поток отказов называют простейшим.
    Простейший поток обладает свойствами стационарности, ординарности и отсутствия последствий.
    Выполнение требования стационарности означает, что вероятностные характеристики потока не зависят от времени. Поток отказов называют потоком без последствий, если для любого набора непересекающихся промежутков времени число отказов на этих промежутках представляют собой взаимно независимые случайные величины. Ординарность означает практическую невозможность возникновения двух или более отказов одновременно, т.е. на одном промежутке времени.

    354
    У простейшего потока вероятность возникновения n отказов на отрезке времени длиной t определяется распределением Пуассона:
    at
    n
    e
    n
    at
    n
    P


    !
    )
    (
    }
    {
    Вероятность отсутствия отказов на интервале времени длиной t равна вероятности события, заключающегося в том, что время Т между отказами больше, чем t:
    P{T > t} = e

    t где  – параметр потока отказов.
    Параметр потока отказов (t) – это отношение числа отказов системы на некотором малом отрезке времени к значению этого отрезка.
    Статистическая формула:
    )
    /(
    ))
    (
    )
    (
    (
    )*
    (
    tN
    t
    n
    t
    t
    n
    t
    i
    i







    где N – общее количество элементов; n
    i
    (t) – число отказов i-ого элемента на интервале времени (0; t).
    Для потока, удовлетворяющего требованию стационарности, параметр потока отказов является постоянной величиной и не зависит от времени.
    Одновременные отказы нескольких элементов могут возникать из–за изменения условий эксплуатации сверх допустимых пределов. Но вследствие того, что надежность системы рассчитывают по установившемся условиям эксплуатации, то потоки отказов модно принимать ординарными. Нестационарность может иметь место из-за наличия периода приработки после пуска системы. Эта же причина может привести к несоблюдению свойства последствия. Последствие может иметь место из-за недостаточного качества восстановления, когда свойства системы не полностью регенерируются после отказа, а также в ситуации, когда отказ одного элемента вызывает ухудшение условий работы других.
    В соответствии с двумя способами задания потока отказов для восстанавливаемых систем модно применять различные показатели надежности и безотказности.

    355
    При задании потока отказов как дискретного случайного процесса – числа отказов на интервале времени (0; t) показателем безотказности является параметр потока отказов, определяемый соотношением, представленным выше.
    При задании потока отказов как последовательности случайных величин (наработок) между отказами задаются показателями безотказности, ремонтопригодности, долговечности и комплексными показателями надежности. Показателем безотказности является средняя наработка на отказ.
    Наработка на отказ (среднее время между соседними отказами) определяется по статистическим данным об отказах для одного устройства по формуле:
    n
    t
    t
    n
    i
    i
    ср



    1
    *
    где n – число отказов устройства за время наблюдения; t
    i
    – время исправной работы устройства между (i – 1) и i отказами.
    При простейшем потоке отказов параметр потока отказов является обратной величиной наработке до отказа.
    Термин наработка определяет продолжительность или объем работы устройства.
    Выбор тех или иных показателей надежности зависит от того, насколько точно требуется определить надежность разрабатываемых технических средств автоматизации.
    К показателям ремонтопригодности относятся вероятность восстановления работоспособного состояния за заданное время и среднее время восстановления.
    Вероятность восстановления работоспособного состояния определяется как вероятность того, что время восстановления окажется меньше некоторого заданного времени t
    1
    Q
    В
    (t
    1
    ) = Вер{T
    В
    < t
    1
    }
    Среднее время восстановления (ремонта) после отказа (определяется по статистическим данным):

    356
    n
    t
    t
    n
    i
    Вi
    В



    1
    *
    Показателем долговечности системы является срок службы системы. Срок службы системы – это случайная величина, характеризующая календарную продолжительность от начала эксплуатации системы до перехода ее в предельное состояние. Для некоторых систем показателем долговечности является установленный срок службы, который должна достигнуть данная система. В качестве случайной величины при рассмотрении долговечности может быть принят не только календарный срок службы системы, но и ее ресурс – наработка от начала эксплуатации до перехода в предельное состояние.
    Комплексные показатели надежности отражают совместно безотказность и ремонтопригодность системы. К комплексным показателям относятся: коэффициент готовности, коэффициент оперативной готовности и коэффициент технического использования.
    Коэффициент готовности k г
    – вероятность того, что система окажется работоспособной в произвольно выбранный момент времени в установившемся процессе эксплуатации. При отсутствии ограничений в обслуживании: k
    г
    = t ср
    * / (t ср
    * + t
    В
    *)
    Коэффициент готовности численно равен средней доле времени, в течение которого система пребывает в работоспособном состоянии.
    Коэффициент оперативной готовности k ог
    – вероятность того, что система окажется работоспособной в произвольно выбранный момент времени в установившемся режиме эксплуатации и что, начиная с этого момента, система будет работать безотказно в течение заданного интервала времени t:
    K
    ог
    * = k г
    × P(t)
    При определении коэффициента готовности и коэффициента оперативной готовности из рассмотрения исключены планируемые периоды времени, в течение которых применение систем по назначению не предусматривается (например, интервалы планового технического обслуживания). Эти периоды времени учитываются коэффициентом технического использования:

    357 k
    ти
    = t ср
    * / (t ср
    * + t
    В
    * + t проф
    *) где t проф
    * – среднее время профилактики, приходящееся на один отказ за рассматриваемый промежуток времени.
    1   ...   24   25   26   27   28   29   30   31   ...   42


    написать администратору сайта