Главная страница
Навигация по странице:

  • Одиночное сокращение и тетанус.

  • Сила сокращения скелетных мышц . Двигательная единица

  • Классификация гладких мышц

  • Нервно-мышечная передача

  • Функции и свойства гладких мышц. Электрическая активность

  • Химическая чувствительность

  • Раздражители гладких мышц

  • КУРС ЛЕКЦИЙ ПО ФИЗИОЛОГИИ. Курс лекций по нормальной физиологии. Ю. И. Савченков. Красноярск Издво , 2012, 470 с


    Скачать 8.61 Mb.
    НазваниеКурс лекций по нормальной физиологии. Ю. И. Савченков. Красноярск Издво , 2012, 470 с
    АнкорКУРС ЛЕКЦИЙ ПО ФИЗИОЛОГИИ.doc
    Дата04.02.2017
    Размер8.61 Mb.
    Формат файлаdoc
    Имя файлаКУРС ЛЕКЦИЙ ПО ФИЗИОЛОГИИ.doc
    ТипКурс лекций
    #2230
    страница11 из 103
    1   ...   7   8   9   10   11   12   13   14   ...   103

    4-3. Виды и режимы мышечного сокращения. Одиночное сокращение. понятие о тетанусе. Механизм длительного сокращения в естественных условиях.


     

    Типы сокращения скелетных мышц.  В ответ на раздражение мышца развивает напряжение и сокращается. Возможны два случая – сокращение с укорочением и без укорочения. Если мышца развивает напряжение без изменения длины, то развивается изометрическое  сокращение. Такое сокращение возникает в двух случаях: когда оба конца мышцы жестко закреплены; когда закреплен один конец, но развиваемая мышцей сила недостаточна для передвижения нагрузки, прикрепленной к другому концу. В отсутствие укорочения работа в физическом смысле не совершается, поскольку отсутствует передвижение. Но в физиологическом отношении мышца работу совершает, так как в ней происходят изменения, характеризующие физиологическую работу: происходит гидролиз АТФ, повышается температура и совершается ряд других изменений.

    Когда мышца укорачивается, преодолевая постоянную нагрузку, говорят об изотоническом сокращении. Большинство сокращений в организме представляют комбинацию изотонического и изометрического компонентов. Изометрическая фаза продолжается до тех пор, пока мышца не разовьет силу, достаточную для перемещения нагрузки. С этого момента начинается изотоническая фаза, и мышца сокращается с постоянной силой, перемещая нагрузку. С увеличением нагрузки скорость и степень укорочения мышцы во время изотонического сокращения уменьшается, а продолжительность изометрической фазы сокращения увеличивается.

    Одиночное сокращение и тетанус.  Одиночный стимул спустя короткое время, около 50 мс, называемое латентным периодом, вызывает сокращение мышцы, и в ней развивается напряжение. Фаза сокращения длится примерно 100 мс. У быстрых фазных мышц она намного короче, чем у медленных. Например, время сокращения быстрых волокон наружной головки четырехглавой мышцы бедра молодых мужчин составляет 30 мс, а медленных – 80 мс. Вслед за сокращением наступает более медленная фаза расслабления, длящаяся до 200 мс.

    Рис. 8.  Суммация и слияние одиночных сокращений до тетануса (зубчатого) при повышении частоты раздражения. Частота толчков тока 5, 10 и 20 Гц. Изометрическое напряжение калибровано в Н/см2 площади поперечного сечения мышцы.

    Если следующий нервный импульс приходит к волокну раньше, чем закончилось расслабление предыдущего одиночного сокращения, происходит суперпозиция (наложение) механических ответов. При ритмической стимуляции мышца все время будет развивать силу, но она будет переменной, так как за межимпульсные интервалы будет происходить расслабление за счет депонирование Са2+ в СПР. Такая форма сокращения называется зубчатым тетанусом (рис. 84). На внутриволоконном уровне это означает, что выходящий из саркоплазматического ретикулума  Са2+ только частично успевает вновь «закачаться» Са2+-насосом в цистерны. Явление последовательного увеличения амплитуды (силы) сокращения скелетной мышцы до величины плато во время частой стимуляции после периода покоя называется эффектом лестницы

     При достаточно высокой частоте стимуляции выходящий из ретикулума Са2+ не успевает вернуться в цистерны, а мышца поэтому будет постоянно находиться  в состоянии максимальной активации. Возникающий при этом вид сокращения называется гладким тетанусом.  Существенно, что повышение частоты стимуляции сопровождается увеличением силы, развиваемой мышцей. При гладком тетанусе напряжение, развиваемое мышцей, обычно в 2-4 раза больше, чем при одиночном сокращении. В естественных условиях для скелетных мышц характерны режимы тетанических, а не одиночных сокращений.

    Сила сокращения скелетных мышц.  Двигательная единица. Под двигательной единицей понимают каждую группу мышечных волокон вместе с иннервирующим ее аксоном. Количество мышечных волокон, входящих в двигательную единицу, неодинаково в разных мышцах. Например, у человека двигательная единица передней большеберцовой мышцы содержит 500-600 волокон, двигательная единица внутренней головки икроножной мышцы – 1500-2000 волокон, мышцы кисти – 100-300, глазные мышцы от 13 до 20 волокон.

    Тонкое управление мышечной активностью достигается регуляцией напряжения, развиваемого каждой отдельной мышцей. Такая регуляция осуществляется одним из двух способов (или обоими одновременно):

      -  изменением числа мышечных волокон, возбуждающихся в данный момент. Развиваемая мышцей сила будет тем больше, чем больше мышечных волокон (и, следовательно, двигательных единиц) будет стимулировано;

      -  изменением частоты нервных импульсов. Чем выше частота приходящих нервных импульсов, тем больше развиваемая сила.

    Максимальная сила мышц. Абсолютная сила, развиваемая разными мышцами, неодинакова. Она определяется:   1) поперечным сечением мышцы,    2) ее длиной,    3) типом сокращения,    4) характером сокращения.

    Для сравнения силы разных мышц используют понятие относительной максимальной силы. Ее измеряют при изометрическом тетанусе небольшой продолжительности (1,5-5 с) и выражают в килограммах (кг) или ньютонах (Н) на площадь поперечного сечения. Этот показатель определяется числом миофибрилл на площади поперечного сечения и количеством поперечных мостиков, т.е. исходной длиной саркомера, точнее толстого миозинового филамента. Максимальная сила у разных мышц разных животных достигает верхнего предела в 4-6 кг/см2, хотя имеются мышцы и со значительно меньшей силой. Очень большую силу развивает аддуктор устрицы – 12 кг/см2. В то же время сердечная мышцы крысы развивает силу всего  до 0,016 кг/см2.  В относительном масштабе максимальная сила целой мышцы ниже таковой отдельного мышечного волокна (на единицу площади сечения).

    4.4. ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ И СВОЙСТВА ГладкиХ мышц.

    Классификация гладких мышц. Висцеральные гладкие мышцы находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К мулытиунитарным относятся ресничная мышца и мышца радужки глаза. Деление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В висцеральных гладких мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток. Благодаря плотным контактам между соседними миоцитами  — нексусам, потенциалы действия и медленные волны деполяризации распространяются с одной мышечной клетки на другую, поэтому висцеральные гладкие мышцы сокращаются одномоментно с приходом нервного импульса.

      Строение гладких мышц.  Гладкие мышцы состоят из клеток веретенообразной формы, средняя длина которых 100 мкм, а диаметр 3 мкм. Клетки располагаются в составе мышечных пучков и тесно прилегают друг к другу. Мембраны прилежащих клеток образуют нексусы, которые обеспечивают электрическую связь между клетками и служат для передачи возбуждения с клетки на клетку. Гладкие мышечные клетки содержат миофиламенты актина и миозина, которые располагаются здесь менее упорядоченно, чем в волокнах скелетной мышцы. Саркоплазматическая сеть в гладкой мышце менее развита, чем в скелетной.

    Иннервация гладких мышц.  Висцеральная гладкая мышца имеет двойную иннервацию — симпатическую и парасимпатическую, функция которой заключа­ется в изменении деятельности гладкой мышцы. Раздражение одного из вегетативных нервов обычно увеличивает активность гладкой мышцы, стимуляция другого — уменьшает. В некоторых органах, например кишечнике, стимуляция адренергических нервов умень­шает, а холинергических — увеличивает мышечную активность; в других, например, сосудах, норадреналин усиливает, а АХ снижает мышечный тонус. Строение нервных окончаний в гладкой мышце отличается от строения нервно-мышечного синапса скелетной мыш­цы. В гладкой мышце нет концевых пластинок и отдельных нервных окончаний. По всей длине разветвлений адренергических и холи­нергических нейронов имеются утолщения, называемые варикозами. Они содержат гранулы с медиатором, который выделяется из каждой варикозы нервных волокон. Таким образом, по ходу следования нервного волокна могут возбуждаться или тормозиться многие глад­кие мышечные клетки. Клетки, лишенные непосредственных кон­тактов с варикозами, активируются потенциалами действия, рас­пространяющимися через нексусы на соседние клетки. Скорость проведения возбуждения в гладкой мышце невелика и составляет несколько сантиметров в секунду.

    Нервно-мышечная передача. Возбуждающее влияние адренергических или холинергических нервов электрически проявляется в виде отдельных волн деполяризации. При повторной стимуляции эти потенциалы суммируются, и по достижении пороговой величины возникает ПД. Тормозящее влияние адренергических или холинергических нервов проявляется в виде отдельных волн гиперполяризации, называемых тормозными постсинаптическими потенциалами (ТПСП). При ритмической стимуляции ТПСП суммируются. Возбуждающие и тормозные постсинаптические потенциалы наблюдаются не только в мышечных клетках, контактирующих с варикозами, но и на некотором расстоянии от них. Это объясняется тем, что постсинаптические потенциалы передаются от клетки к клетке через нексусы или посредством диффузии медиатора из мест его выделения.

    Функции и свойства гладких мышц.  Электрическая активность. Висцеральные гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состо­янии постоянного частичного сокращения — тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол.

    В периоды состояния отно­сительного покоя величина мембранного потенциала в среднем рав­на — 50 мВ. В клетках висцеральных гладких мышц наблюдаются медленные волнообразные флюктуации мембранного потенциала ве­личиной в несколько милливольт, а также ПД. Величина ПД может варьировать в широких пределах. В гладких мышцах продолжи­тельность ПД 50—250 мс; встречаются ПД различной формы. В не­которых гладких мышцах, например мочеточника, желудка, лимфатических сосудов, ПД имеют продолжительное плато во время реполяризации, напоминающее плато потенциала в клетках миокарда. Ионная природа ПД гладкой мышцы опреде­ляется особенностями каналов мембраны гладкой мышечной клетки. Основную роль в механизме возникновения ПД играют ионы Са2+. Кальциевые каналы мембраны гладких мышечных клеток пропу­скают не только ионы Са2+, но и другие двухзарядные ионы (Bа2+, Mg2+), а также Na+. Вход Са2+ в клетку во время ПД необходим для поддержания тонуса и развития сокращения, поэтому блокиро­вание кальциевых каналов мембраны гладких мышц, приводящее к ограничению поступления иона Са2+ в цитоплазму миоцитов внутренних органов и сосудов, широко используется в практической медицине для коррекции моторики пищеварительного тракта и то­нуса сосудов при лечении больных гипертонической болезнью.

    Автоматия. Многим гладким мышцам свойственна спонтанная, автоматическая активность. Для нее характерно медленное снижение мембранного потенциала покоя, которое при достижении определенного уровня сопровождается возникновением ПД. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

    Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. Наконец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.

    Пластичность. Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным рас­тяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы.

    Механизм сокращения. В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде, чем миозин гладкой мышцы сможет проявлять свою АТФ-азную активность, он должен быть фосфорилирован. Механизм фосфорилирования миозина гладкой мышцы осуществляется следующим образом: ион Са2+ соединяется с кальмодулином (кальмодулин — рецептивный белок для иона Са2+). Возникающий комплекс активирует фермент — киназу легкой цепи миозина, который в свою очередь катализирует процесс фосфорилирования миозина. Затем происходит скольжение актина по отношению к миозину, составляющее основу сокращения. Отметим, что пусковым моментом для сокращения гладкой мышцы является присоединение иона Са2+ к кальмодулину, в то время как в скелетной и сердечной мышце пусковым моментом является при­соединение Са2+ к тропонину.

    Химическая чувствительность. Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веще­ствам: адреналину, норадреналину, АХ, гистамину и др. Это обуслов­лено наличием специфических рецепторов мембраны гладкомышеч­ных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенци­ал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов. Норадреналин действует на α- и β-адренорецепторы мембраны гладкомышечных клеток. Взаимодействие норадреналина с β-рецепторами уменьшает тонус мышцы в результате активации аденилатциклазы и образования циклического АМФ и последующего увели­чения связывания внутриклеточного Са2+. Воздействие норадреналина на α-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+ из мышечных клеток.

    АХ оказывает на мембранный потенциал и сокращение гладкой мускулатуры кишечника действие, противоположное действию норадреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтан­ных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мем­брану, увеличивает ее проницаемость для Na+ и Са+.

     Проведение возбуждения по гладкой мышце. В отличие от того, что имеет место в скелетных мышцах, в гладких потенциал действия, возникающий в одном волокне, может распространяться на соседние волокна. Обусловлено это тем, что в мембране гладкомышечных клеток в области контактов с соседними имеются участки относительно малого сопротивления, через которые петли тока, возникшие в одном волокне, легко переходят на соседние, вызывая деполяризацию их мембран. В этом отношении гладкая мышца сходна с сердечной. Отличие заключается только в том, что в сердце от одной клетки возбуждается вся мышца, а в гладких мышцах ПД, возникший в одном участке, распространяется от него лишь на определенное расстояние, которое зависит от силы приложенного стимула.    

    Другая существенная особенность гладких мышц заключается в том, что распространяющийся ПД возникает в них только в том случае, если приложенный стимул возбуждает одновременно некоторое минимальное число мышечных клеток. Эта "критическая зона" имеет диаметр около 100 мк, что соответствует 20-30 параллельно лежащим клеткам. Скорость проведения возбуждения в различных гладких мышцах составляет от 2 до 15 см/сек. т.е. значительно меньше, чем в скелетной мышце.

    Так же, как и в скелетной мускулатуре, в гладкой потенциалы действия имеют пусковое значение для начала сократительного процесса. Связь между возбуждением и сокращением здесь также осуществляется с помощью Са++. Однако в гладкомышечных волокнах саркоплазматический ретикулюм плохо выражен, поэтому ведущую роль в механизме возникновения сокращения отводят тем ионам Са++, которые проникают внутрь мышечного волокна во время генерации ПД.

    При большой силе одиночного раздражения может возникнуть сокращение гладкой мышцы. Латентный период сокращения ее значительно больше, чем скелетной, достигая 0,25-1 сек. Продолжительность самого сокращения тоже велика - до 1 минуты. Особенно медленно протекает расслабление после сокращения. Волна сокращения распространяется по гладкой мускулатуре с той же скоростью, что и волна возбуждения (2-15 см/сек). Но эта медленность сократительной активности сочетается с большой силой сокращения гладкой мышцы. Так, мускулатура желудка птиц способная поднимать 2 кг на 1 кв.мм. своего поперечного сечения.

    Вследствие медленности сокращения гладкая мышца даже при редких ритмических раздражениях (10-12 в мин) легко переходит в длительное состояние стойкого сокращения, напоминающее тетанус скелетных мышц. Однако энергетические расходы при таком сокращении очень низки.

    Способность к автоматии гладких мышц присуща их мышечным волокнам и регулируется нервными элементами, которые находятся в стенках гладко мышечных органов. Миогенная природа автоматии доказана опытами на полосках мышц кишечной стенки, освобожденных от нервных элементов. На все внешние воздействия гладкая мышца реагирует изменением частоты спонтанной ритмики, следствием чего являются сокращения или расслабления мышцы.

    Раздражители гладких мышц. Одним из важных физиологически адекватных раздражителей гладких мышц является их быстрое и сильное растяжение. Оно вызывает деполяризацию мембраны мышечного волокна и возникновение распространяющегося ПД. В результате мышца сокращается.

    Характерной особенностью гладких мышц является их высокая чувствительность к некоторым химическим раздражителям, в частности, к ацетилхолину, норадреналину, адреналину, гистамину, серотонину, простагландинам.
    1   ...   7   8   9   10   11   12   13   14   ...   103


    написать администратору сайта