«Материаловедение». материаловедение. Курс лекций по оп04. Материаловедению для гр. 4181 Урок 29 Превращения в сплавах при нагреве и охлаждении
Скачать 0.69 Mb.
|
Урок № 37 Общие сведения о конструкционных материалах Технология конструкционных материалов представляет собой комплексную дисциплину, которая содержит основные сведения о способах получения металлических и неметаллических конструкционных материалов, их свойствах и методах обработки при получении заготовок, готовых деталей или изделий различного назначения. Успешное изучение ряда специальных дисциплин, а также дальнейшая деятельность студентов многих специальностей может стать успешной лишь при усвоении этих вопросов. В технике применяют большое число различных металлов, которые можно разделить на черные и цветные. К первым относят железо и его сплавы, ко вторым — все остальные металлы и их сплавы. Черные металлы представляют собой сложные сплавы железа с углеродом, кремнием, марганцем, серой, фосфором и другими элементами. Однако основным элементом, оказывающим главное влияние на свойства этих металлов, является углерод. В зависимости от его содержания сплавы делят на стали и чугуны. Сталями называют сплавы железа с углеродом, в которых углерода содержится до 2,14%, а чугунами — свыше 2,14%. Цветные металлы подразделяют на тяжелые (медь, свинец, олово, никель и др.), легкие (алюминий, магний и др.), редкие (молибден, вольфрам, ванадий и др.) и благородные (золото, платина, серебро). Цветные металлы обладают многими ценными свойствами, но их мало и они дороги и во всех случаях, когда это допустимо, цветные металлы заменяют черными металлами, пластмассами и синтетическими материалами. Все тела состоят из атомов. Тела, в которых атомы расположены беспорядочно, называют аморфными(стекло, воск, смола и др.). Кристаллические тела, к которым относятся все металлы и металлические сплавы, характеризуются упорядоченным расположением атомов. В них атомы находятся в узлах пространственных кристаллических решеток. Аморфные тела изотропны, то есть имеют одинаковые свойства по всем направлениям. Кристаллические тела анизотропны: у них неоднородные свойства в разных геометрических направлениях. В связи с этим физические и механические свойства одного кристалла могут изменяться в зависимости от того, в каком направлении эти свойства определяют. Металлические изделия, состоящие из огромного числа кристаллов, представляют собой поликристаллические тела. Произвольность ориентировки каждого кристалла приводит к тому, что свойства оказываются практически одинаковыми во всех направлениях. В процессе кристаллизации металлов и сплавов могут образовываться кристаллические решетки разного типа. Наиболее распространенными являются объемно-центрированная кубическая, гранецентрированная кубическая и гексагональная решетки (рис. 1). а б в Рис.1. Расположение атомов в кристаллических решетках: а - объемно-центрированная кубическая; б - гранецентрированная кубическая; в - гексагональная Решетку объемно-центрированного куба имеют многие металлы, например Cr, Fe, Pb, W; гранецентрированную кубическую решетку - Al, Ni, Cu; гексагональную решетку — Mg, Zn, Ti. Некоторые металлы (железо, марганец и др.) в зависимости от температуры нагрева могут иметь кристаллические решетки различного строения и, следовательно, обладать различными свойствами. Это явление называют аллотропией. К металлам, не претерпевающим аллотропических превращений в твердом состоянии при нагревании и охлаждении, относятся алюминий, магний, медь и др. Большое количество технически важных металлов (олово, цинк, никель, и др.) подвержено аллотропическим изменениям. Урок № 38 Виды конструкционных материалов Конструкционные стали. 1. Легированные стали 2. Влияние элементов на полиморфизм железа 3. Влияние легирующих элементов на превращения в стали 4. Влияние легирующих элементов на превращение перлита в аустенит. 5. Влияние легирующих элементов на превращение переохлажденного аустенита. 6. Влияние легирующих элементов на мартенситное превращение 7. Влияние легирующих элементов на преврашения при отпуске. 8. Классификация легированных сталей Конструкционные стали. К конструкционным сталям, применяемым для изготовления разнообразных деталей машин, предъявляют следующие требования: сочетание высокой прочности и достаточной вязкости хорошие технологические свойства экономичность недефицитность Высокая конструкционная прочность стали, достигается путем рационального выбора химического состава, режимов термической обработки, методов поверхностного упрочнения, улучшением металлургического качества. Решающая роль в составе конструкционных сталей отводится углероду. Он увеличивает прочность стали, но снижает пластичность и вязкость, повышает порог хладоломкости. Поэтому его содержание регламентировано и редко превышает 0,6 %. Влияние на конструкционную прочность оказывают легирующие элементы. Повышение конструкционной прочности при легировании связано с обеспечением высокой прокаливаемости, уменьшением критической скорости закалки, измельчением зерна. Применение упрочняющей термической обработки улучшает комплекс механических свойств. Металлургическое качество влияет на конструкционную прочность. Чистая сталь при одних и тех же прочностных свойствах имеет повышенные характеристики надежности. Легированные стали Элементы, специально вводимые в сталь в определенных концентрациях с целью изменения ее строения и свойств, называются легирующими элементами, а стали – легированными. Cодержание легируюшихх элементов может изменяться в очень широких пределах: хром или никель – 1% и более процентов; ванадий, молибден, титан, ниобий – 0,1… 0,5%; также кремний и марганец – более 1 %. При содержании легирующих элементов до 0,1 % – микролегирование. В конструкционных сталях легирование осуществляется с целью улучшения механических свойств (прочности, пластичности). Кроме того меняются физические, химические, эксплуатационные свойства. Легирующие элементы повышают стоимость стали, поэтому их использование должно быть строго обоснованно. Достоинства легированных сталей: особенности обнаруживаются в термически обработанном состоянии, поэтому изготовляются детали, подвергаемые термической обработке; улучшенные легированные стали обнаруживают более высокие показатели сопротивления пластическим деформациям ( ); легирующие элементы стабилизируют аустенит, поэтому прокаливаемость легированных сталей выше; возможно использование более «мягких» охладителей (снижается брак по закалочным трещинам и короблению), так как тормозится распад аустенита; повышаются запас вязкости и сопротивление хладоломкости, что приводит к повышению надежности деталей машин. Недостатки: подвержены обратимой отпускной хрупкости II рода; в высоколегированных сталях после закалки остается аустенит остаточный, который снижает твердость и сопротивляемость усталости, поэтому требуется дополнительная обработка; склонны к дендритной ликвации, так как скорость диффузии легирующих элементов в железе мала. Дендриты обедняются, а границы – междендритный материал – обогащаются легирующим элементом. Образуетсястрочечная структура после ковки и прокатки, неоднородность свойств вдоль и поперек деформирования, поэтому необходим диффузионный отжиг. склонны к образованию флокенов. Флокены – светлые пятна в изломе в поперечном сечении – мелкие трещины с различной ориентацией. Причина их появления – выделение водорода, растворенного в стали. При быстром охлаждении от 200 o водород остается в стали, выделяясь из твердого раствора, вызывает большое внутреннее давление, приводящее к образованию флокенов. Меры борьбы: уменьшение содержания водорода при выплавке и снижение скорости охлаждения в интервале флокенообразования.Переход металлов и сплавов из жидкого состояния в твердое связан с их кристаллизацией. При температуре кристаллизации в жидком металле сначала образуются центры кристаллизации, причем их роль играют разные примеси и включения. После образования зародышей атомы жидкого металла, расположенные беспорядочно, начинают располагаться вокруг этих зародышей и образуют кристаллы правильной геометрической формы. Так как кристаллизация начинается одновременно во многих местах и рост кристаллов идет по всем направлениям, то смежные кристаллы, сталкиваясь между собой, мешают свободному росту каждого. Это приводит к тому, что кристаллы приобретают неправильную внешнюю форму, несмотря на их упорядоченное внутреннее строение. Кристаллы неправильной формы принято называть кристаллитами, или зернами. В практических условиях кристаллизация с образованием геометрически правильных кристаллов происходит очень редко. Почти всегда образуются кристаллические зерна или дендриты неправильной геометрической формы. Каждое зерно состоит из большого количества мелких кристаллических решеток, в которых атомы расположены закономерно. Дендриты представляют собой древовидные кристаллы. Охлаждение и надевание сплавов характеризуются (в отличие от чистых металлов) тем, что затвердевание и расплавление у них происходит не при одной определенной температуре, а в интервале температур. Начало затвердевания сплава соответствует температуре t 1 , а конец затвердевания — температуре t 2 Температуры, при которых происходят аллотропические и агрегатные превращения, называют критическими температурами или критическими точками. Урок № 41-42 Стали и сплавы с особыми свойствами К сталям и сплавам с особыми физическими свойствами относятся те, работоспособность которых оценивается не только по механическим, но и по ряду других (теплофизических, магнитных , электрических и др.) свойств требуемого уровня. Стали и сплавы с особыми физическими свойствами часто называют прецизионными. Прецизионные сплавы -металлические сплавы с особыми физическими свойствами (магнитными, электрическими, тепловыми, упругими) или редким сочетанием свойств, уровень которых в значительной степени обусловлен точностью химического состава, отсутствием примесей, тщательностью изготовления и обработки. Стали и сплавы с особыми физическими свойствами имеют очень широкий диапазон использования. Наибольшее распространение получили стали и сплавы: · с заданным температурным коэффициентом линейного расширения; · с высоким электросопротивлением (при повышенной жаростойкости); · магнитные стали и сплавы. Стали и сплавы с заданным температурным коэффициентом линейного расширения Стали и ставы с заданным температурньм коэффициентом линейного расширения (ГОСТ 10994-74) предназначены для впаивания изделий на их основе в стеклянные и керамические корпуса вакуумных приборов. Химический состав этих сплавов базируются на системе Fe+Ni + Co с небольшим количеством меди. Точный состав каждого сплава устанавливается для конкретного вида стекла или керамики, используемых в изделиях , из условия равенства их температурных коэффициентов линейного расширения. Например, сплав 29НК (29% Ni, 18% Со, остальное Fe) с a = (4,6...5,5)•10 -6 °C - 1 , называемый ковар, предназначен для вакуумных впаев в молибденовые стекла. Для изготовления деталей, спаиваемых со стеклом (например, в телевизионных кинескопах), применяют более дешевые ферритные железохромистые сплавы 18ХТФ и 18ХМТФ, имеющие a= 8,7•10 -6 °C -1 Особое место в сплавах с заданным температурным коэффициентом линейного расширения занимают сплавы с малым коэффициентом, существенно не меняющимся в высокотемпературной области. Эти сплавы предназначены для изготовления деталей измерительных приборов и технических средств. Промышленное значение имеет сплавинвар на базе железа и никеля (36%) с небольшим (0,05%) количеством углерода. Для этого сплава величина температурного коэффициента линейного расширения a = 1.. 1,5-10 -6 °С -1 , причем, изменение величины коэффициента при температурах 600...700°С происходит очень плавно за счет ферромагнитного эффекта. Эти сплавы используют для деталей, впаиваемых в неорганические диэлектрики - стекло, керамику, слюду и др. Стали и сплавы с высоким электросопротивлением Стали и сплавы с высоким электросопротивлением (ГОСТ 10994-74) должны сочетать высокое сопротивление (1,06... 1,47 мкОм·м, что более чем в 10 раз выше, чем у низкоуглеродистой стали) и иметь жаростойкость 1000...1350°С. К технологическим свойствам таких сплавов предъявляются требования высокой пластичности, обеспечивающей хорошую деформируемость на прутки, полосу , проволоку и ленты , в том числе малых сечений, а к потребительским - малая величина температурного коэффициента линейного расширения. Для этих сплавов используются системы Fe + Сг + А1, Fe + Ni + Сг и Ni + Сr. Их микроструктура представляет собой твердые растворы с высоким содержанием легирующего элемента. Чем больше в сплавах хрома и алюминия, тем выше их жаростойкость. Количество углерода в сплавах строго ограничивают (0,06...0,12%), так как появление карбидов снижает пластичность и сокращает срок эксплуатации изделий. Наибольшее распространение в технике получили сплавы ферритного класса: Х13Ю4 (фехраль), ОХ23Ю5 (хромель) и ОХ27Ю5А. Эти сплавы малопластичны, поэтому изделия из них, особенно крупные, следует выполнять при подогреве до 200...300°С. сопротивление ползучести ферритных сплавов невелико, поэтому нагреватели при высоких (1150...1200°С) температурах нередко провисают под действием собственной массы. Высоким электросопротивлением обладают сплавы на основе никеля - Х20Н80 (нихромы). Нихромы с железом называют ферронихромами, наприм ер, сплав Х15Н60, содержащий 25% Fe. Ферронихромы обладают более высокими технологическими свойствами и дешевле, чем нихромы. Стали и сплавы с высоким электросопротивлением предназначены для изготовления деталей и элементов нагревательных приборов, реостатов, а также резисторов, терморезисторов, тензодатчиков и др. Магнитные стали и ставы Магнитные стали и сплавы классифицируют на магнитно-твердые, магнитно-мягкие и парамагнитные. Магнитно-твердые стали и сплавы (ГОСТ 17809-72) по своим потребительским свойствам характеризуются высокими коэрцитивной силой и остаточной индукцией и соответственно высокой магнитной энергией (BrHc)max. По химическому составу промышленные магнитно-твердые стали и сплавы в порядке возрастания их коэрцитивной силы и магнитной энергии представляют собой: · высокоуглеродистые стали (1,2... 1,4% С); · высокоуглеродистые (1%С) сплавы железа с хромом (до 2,8%), легированные кобальтом; · высокоуглеродистые сплавы железа, алюминия, никеля и кобальта, называемые алнико. Легирующие элементы повышают, главным образом, коэрцитивную силу и магнитную энергию, а также улучшают температурную и механическую стабильности постоянного магнита. В углеродистых магнитно-твердых сталях необходимые свойства (Я,. = 65 Э) обеспечиваются неравновесной мартенситной структурой с высокой плотностью дефектов. В сплавах железа с хромом (например, ЕХЗ) высокие потребительские свойства обеспечивают магнитная и кристаллографическая текстуры, получаемые в результате термообработки, включающей нормализацию и высокий отпуск или закалку и низкий отпуск. Наиболее высокие свойства (Нс = 500 Э), достигаемые в сплавах алнико, реализуются за счет выделения интерметаллида NiAl и наличия магнитной и кристаллографической текстур. Для сплавов алнико используют при термообработке нагрев до 1300°С с последующим охлаждением со скоростью 0,5...5 °С/с в магнитном поле. Обозначают магнитно-твердые стали индексом "Е", указывая далее буквой с цифрой наличие хрома и его содержание в целых процентах (например, ЕХ2, ЕХЗ). Магнитно-твердые стали и сплавы используются для изготовления различного рода постоянных магнитов. В промышленности наиболее широко применяют сплавы типа алнико (ЮНДК15, ЮН14ДК25А, ЮНДК31ТЗБА и др.). Эти сплавы тверды, хрупки и не поддаются деформации, поэтому магниты из них изготовляют литьем. После литья проводят только шлифование. Магнитно-мягкие стали и сплавы отличаются легкой намагничиваемостью в относительно слабых магнитных полях. Их основными потребительскими свойствами являются высокая магнитная проницаемость, низкая коэрцитивная сила, малые потери на вихревые токи и при перемагничивании. Эти свойства обеспечивает гомогенная (чистый металл или твердый раствор) структура, чистая от примесей. Магнитно-мягкие материалы должны быть полностью рекристаллизованы для устранения внутренних напряжений, так как даже слабый наклеп существенно снижает магнитную проницаемость и повышает коэрцитивную силу. Магнитная проницаемость возрастает при микроструктуре из более крупных зерен. По химическому составу промышленно применяемые магнитно-мягкие (электротехнические) стали и сплавы делятся на: · низкоуглеродистые (0,05...0,005%С) с содержанием кремния 0,8...4,8%; · сплавы железа с никелем. В низкоуглеродистых сталях кремний, образуя с a-железом твердый раствор, увеличивает электрическое сопротивление и, следовательно, уменьшает потери на вихревые токи; кроме того. кремний повышает магнитную проницаемость, немного снижает коэрцитивную силу и потери на гистерезис вследствие вызываемого им роста зерна, графитизирующего действия и лучшего раскисления сталей. |