Теория принятий решений Использование имитационного моделирования для принятия решений в задаче массового обслуживания. Курсовая работа По дисциплине Теория принятий решений
Скачать 478.83 Kb.
|
Размещено на http://www.allbest.ru/ Курсовая работа По дисциплине: Теория принятий решений Использование имитационного моделирования для принятия решений в задаче массового обслуживания 2014 Введение математический модель массовый обслуживание Объектом курсовой работы является система массового обслуживания, в примере которого является автомойка. Цель системы состоит в том, чтобы использовать человеческие ресурсы и ресурсы оборудования для удовлетворения потребностей клиентов, оценивать изменения, возникающие в затратах на функционирование системы и в издержках, связанных с ожиданием клиентов. Имитационное моделирование - построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Цель работы состоит в рассмотрении модели на основе СМО, используя данные составить имитацию очереди на обслуживание, найти среднее число заданного вопроса. 1. Постановка задачи и исходные данные Модели очередей (как и линейное программирование, модели управления запасами, методы сетевого анализа проектов) используются и в сфере управления материальным производством, и в сфере обслуживания. Анализ очередей в терминах длины очереди, среднего времени ожидания, среднего времени обслуживания и других факторов помогает нам лучше понять принципы организации системы обслуживания. Ожидание пациента в приемной врача и ожидание починки сломанной дрели в ремонтной мастерской имеют много общего с точки зрения управления процессом обслуживания. Оба процесса используют человеческие ресурсы и ресурсы оборудования для удовлетворения потребностей клиентов. Профессиональный менеджер, принимая решение о совершенствовании системы массового обслуживания, оценивает изменения, возникающие в затратах на функционирование системы и в издержках, связанных с ожиданием клиентов. Можно нанять большое количество сотрудников, которые будут быстро обслуживать клиентов. Так, администратор супермаркета может уменьшить очереди в кассы, увеличивая в часы пик количество продавцов и кассиров. Для работы в кассах банков или аэропортов в часы пик могут быть привлечены дополнительные сотрудники. Однако снижение времени ожидания обычно сопряжено с издержками на создание и оснащение рабочих мест, с оплатой труда дополнительного персонала. Эти издержки могут быть весьма значительны. Можно сэкономить на трудозатратах. Но тогда клиент может не дождаться обслуживания или потерять охоту вернуться еще раз. В последнем случае система массового обслуживания будет нести потери, которые можно назвать издержками ожидания. В некоторых системах обслуживания, например в скорой помощи, затраты, связанные с длительным ожиданием, могут оказаться чрезвычайно высокими. Основной экономический принцип совершенствования систем массового обслуживания состоит в оценке общих ожидаемых затрат, включающих затраты на обслуживание и потери, которые несет система в результате ожидания клиента. Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования. Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются: - абсолютная пропускная способность системы (А), т.е. среднее число заявок, обслуживаемых в единицу времени; - относительная пропускная способность (Q), т.е. средняя доля поступивших заявок, обслуживаемых системой; - вероятность отказа, т.е. вероятность того, что заявка покинет СМО не обслуженной; - среднее число занятых каналов (k); - среднее число заявок в СМО; - среднее время пребывания заявки в системе; - среднее число заявок в очереди - длина очереди; - среднее число заявок в системе; - среднее время пребывания заявки в очереди; - среднее время пребывания заявки в системе - степень загрузки канала, т.е. вероятность того, что канал занят; - среднее число заявок, обслуживаемых в единицу времени; - среднее время ожидания обслуживания; - вероятность того, что число заявок в очереди превысит определенное значение и т.п. 2. Основные понятия и общая постановка задачи 1. Система массового обслуживания (СМО) — система, которая производит обслуживание поступающих в неё требований. Обслуживание требований в СМО производится обслуживающими приборами. Классическая СМО содержит от одного до бесконечного числа приборов. В зависимости от наличия возможности ожидания поступающими требованиями начала обслуживания СМО подразделяются на системы с потерями, в которых требования, не нашедшие в момент поступления ни одного свободного прибора, теряются; системы с ожиданием, в которых имеется накопитель бесконечной ёмкости для буферизации поступивших требований, при этом ожидающие требования образуют очередь; системы с накопителем конечной ёмкости (ожиданием и ограничениями), в которых длина очереди не может превышать ёмкости накопителя; при этом требование, поступающее в переполненную СМО (отсутствуют свободные места для ожидания), теряется. Основные понятия СМО: Требование (заявка) — запрос на обслуживание. Входящий поток требований — совокупность требований, поступающих в СМО. Время обслуживания — период времени, в течение которого обслуживается требование. Математическая модель СМО — это совокупность математических выражений, описывающих входящий поток требований, процесс обслуживания и их взаимосвязь. СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание. Имитация – это попытка дублировать особенности, внешний вид и характеристики реальной системы. Идея имитации состоит в: математическом описании реальной ситуации; изучении ее свойств и особенностей; формировании выводов и принятии решений, связанных с воздействием на эту ситуацию и основанных на результатах имитации. Причем реальная система не подвергается воздействиям до тех пор, пока преимущества или недостатки тех или иных управленческих решений не будут оценены с помощью модели этой системы. Основная цель имитационного моделирования заключается в воспроизведении поведения изучаемой системы на основе анализа наиболее существенных взаимосвязей ее элементов. 2. Обслуживающая система (ОС) представляет собой совокупность устройств (канал, прибор), которые обеспечивают обслуживание заявки, пришедшей в систему. Обслуживающая система характеризуется пропускной способностью (скоростью обслуживания), т.е. числом обслуженных заявок в единицу времени, и законом распределения времени обслуживания заявок. Примерами таких систем могут служить коммутатор телефонной станции, станок, на котором обрабатываются детали, машины химчистки одежды, оператор сберегательного банка, дежурная справочного бюро и пр. Поток обслуживающих заявок, выходящих из обслуживающей системы, называется выходным потоком заявок. Параметром выходного потока является интенсивность. Всякая система массового обслуживания имеет определенную дисциплину очереди, т.е. порядок обслуживания пришедших заявок. Дело в том, что бывают случаи, когда система обслуживания не в состоянии немедленно обслужить все заявки. В результате образуется очередь из заявок, пришедших на обслуживание. То, в каком порядке заявки из очереди будут поступать в обслуживающую систему, определяется дисциплиной очереди. Например, первой заявка поступила и первой обслуживалась; последней заявка поступила и первой обслуживалась; случайный порядок обслуживания заявок; обслуживание определенных заявок в первую очередь (заявки с приоритетом) и т.п. 3. Сущность имитационного моделирования СМО заключается в том, что необходимо построить алгоритмы, вырабатывающие случайные реализации заданных событий или потоков. Это означает, что нужно проимитировать все входные потоки, задать случайные значения времен обслуживания заявок для каждого канала, а также дисциплину очереди. Работа алгоритма заключается в многократном воспроизведении случайных реализаций процесса прихода заявок и процесса их обслуживания при фиксированных условиях задачи. Меняя условия задачи, параметры входных потоков и элементов СМО, можно получить качественные параметры данного СМ О при тех или иных изменениях. Оценка качественных параметров СМО типа вышеперечисленных для простейших входных потоков и элементарных СМО осуществляется путем статистической обработки величин, являющихся качественными показателями функционирования СМО. Метод имитационного моделирования позволяет изучать переходные процессы в СМО, возникающие при существенных изменениях распределения моментов поступления заявок в систему обслуживания, в зависимости от преобразования структуры и параметров СМО и т.п. Необходимо учитывать, что при осуществлении имитационного моделирования стационарный или установившийся режим деятельности СМО наступает после осуществления значительного количества имитационных реализаций, а начальные реализации процесса могут существенно отличаться от установившихся. Здесь сразу просматриваются преимущества имитационного метода в отличие от аналитических методов расчета параметров СМО, так как последние позволяют получить величины параметров только для установившихся значений. Как правило, такие потоки должны обладать свойствами стационарности, отсутствия последействия и однородности. Если выполнить все эти условия, то имитационное моделирование СМО в отличие от аналитического решения сможет дать дополнительно только значения качественных параметров в переходном процессе, т.е. в начальный период функционирования СМО. Установившиеся значения с точностью до инструментальной ошибки должны быть одинаковы. В учебном процессе при иллюстрации аналитического решения или решения на имитационной модели в большинстве случаев именно так и поступают. Тем самым создается ошибочное впечатление о больших возможностях аналитического или имитационного метода оценки СМО. Причина такого заблуждения заключается в том, что модели СМО строят обычно математики, которым гораздо проще сделать поток однородным, стационарным и без последействия, чем изучать фактические потоки событий в реальных объектах при их моделировании с применением СМО. Способов получения простейших случайных потоков однородных событий, обладающих свойствами стационарности и отсутствия последействия, достаточно много, как и литературы по этому поводу. Вместе с тем можно утверждать, что применение простейших потоков случайных событий при аналитическом или имитационном моделировании на основе СМО сложных экономических объектов не является эффективным и, как правило, создает ошибочное представление о качестве функционирования объекта. 4. В качестве примера рассмотрим сравнительно простой случай моделирования на основе СМО Количество машин, приезжающих на автомойку Марка Беззаботного в течение последних часов ее работы. Пусть число машин прибывающих каждый час равняется 5. Автомойка работает - 15 часов. В среднем режим обслуживания машин обрабатывает 6 заказов за час. Проимитируйте прибытие и обслуживание машин на автомойке в течение 15 ч работы. Используйте для имитации случайные числа. Сколько машин в среднем прибывает в час? Будет ли в таком режиме обслуживания существовать очередь? 3. Практическая часть 1. Условия задачи представлены в таблицах (1,2): Таблица 1
Таблица 2
С помощью этих данных, найдем интегральную вероятность и интервал случайных чисел, расчеты приведены в таблицах 3, 4: Таблица 3
Таблица 4
1) Интегральную вероятность высчитываем путем сложения между (вероятности числа обслуживания машин (ВЧОМ)) и предыдущем (полученным числом интегральной вероятности (ПЧИВ)). 2) Интервал случайных чисел (ИСЧ) = интегральной вероятности (ИВ). Составим имитацию очереди на обслуживание машин:
2. Расчетные данные: 1) М= истина/ложь (L< P;0;P), если L< чем P, то М= 0, если L >= P, то М= L-K 2) СЧ, СЧ(1)= случайное число 3) K= истина/ложь (СЧ< $ИСЧ $0-5 ЧМП) (если СЧ < ИСЧ 0-5, то K=L-M) 4) L= M+K 5) P= истина/ложь (СЧ(1)< $ИСЧ $1-6 ЧМO) (если СЧ(1) < ИСЧ 0-5, то K=L-M) 6) N= истина/ложь (если L>P, то N - есть очередь, если L 7) D= истина/ложь (если N= истина, то D=L-P) 8)Q= истина/ложь (выбирается наименьшее число между L;P) Ответ: среднее число 1) 3,333333333; 2) 3,272727273 Заключение При написании курсовой работы, нами была изучена литература, включающая статью имитационного моделирования в системах массового обслуживания. В результате созданного и проведенного проекта, нами было выявлено, что можно быстро и легко составить план прихода, ухода, задержек и очередей в любом доступном нами месте как магазины, больницы, приведенном нами в примере автомойка, и многие другие. Число прибывших за час зависит от числа прибывающих машин. Есть ли очередь зависит от того каким будет случайное число по отношению к числу прибывающих и обслуженных машин. |