Главная страница
Навигация по странице:

  • Обмен веществ у микроорганизмов Основу жизнедеятельности микроорганизмов, как и всех живых существ, составляет обмен веществ. Обмен веществ

  • 2.Плазмолиз

  • Гетеротрофы

  • Ферменты микроорганизмов Ферменты (энзимы)

  • Химический состав микроорганизмов

  • ТЕМА 1.3 ВЛИЯНИЕ УСЛОВИЙ ВНЕШНЕЙ СРЕДЫ НА МИКРООРГАНИЗМЫ. РАСПРОСТРАНЕНИЕ МИКРООРГАНИЗМОВ В ПРИРОДЕ.

  • Оптимум

  • Физические факторы, влияющие на микроорганизмы ВЛИЯНИЕ ТЕМПЕРАТУРЫТемпература

  • Влияние высоких температур.

  • Влияние низких температур.

  • Химические и биологические факторы, влияющие на микроорганизмы

  • Нейтрофилы

  • Основы микробиологии. Лекция. Основы микробиологии, физиологии питания, санитарии и ги. Лекции Основы микробиологии, физиологии питания, санитарии и гигиены


    Скачать 337.99 Kb.
    НазваниеЛекции Основы микробиологии, физиологии питания, санитарии и гигиены
    АнкорОсновы микробиологии
    Дата08.04.2021
    Размер337.99 Kb.
    Формат файлаdocx
    Имя файлаЛекция. Основы микробиологии, физиологии питания, санитарии и ги.docx
    ТипЛекции
    #192514
    страница2 из 5
    1   2   3   4   5
    ТЕМА 1.2 ФИЗИОЛОГИЯ МИКРООРГАНИЗМОВ

    Физиология микроорганизмов - наука об их питании, дыхании, росте, развитии, размножении, взаимодействии с окружающей средой и реакциях на внешние раздражители.

    Знание физиологии микроорганизмов дает возможность понять, какие изменения происходят в пищевых продуктах, промышленных товарах и материалах при переработке или порче их под действием микробов.


    Обмен веществ у микроорганизмов

    Основу жизнедеятельности микроорганизмов, как и всех живых существ, составляет обмен веществ. Обмен веществ (метаболизм) - это совокупность химических превращений веществ, которые протекают в клетке в тесном взаимодействии с окружающей средой. Обмен веществ у микроорганизмов слагается из двух процессов: процессов конструктивного обмена (питание) и энергетического (дыхание).

    Процесс питания организма состоит из поступления и усвоения пищи (ассимиляция). Поступившие извне вещества сначала расщепляются на более простые (распад или катаболизм) и из этих разнообразных низкомолекулярных соединений синтезируются сложные вещества (анаболизм). Это так называемый строительный обмен, поскольку постоянно происходит обновление клеточной структуры организма. Этот процесс преобладает в период роста.

    Дыхание организма состоит из процессов расщепления и окисления органических веществ (диссимиляция), которая сопровождается освобождением энергии, необходимой для жизни и осуществления синтетических процессов. Этот процесс начинает преобладать у организмов к старости.

    Оба эти противоположных процесса находятся в тесной взаимосвязи и взаимозависимости. Они неотделимы один от другого, обуславливают рост, развитие и размножение организма. Конечные продукты обмена веществ выделяются во внешнюю среду.

    Особенностью микробов является необычайно интенсивный обмен веществ. За сутки при благоприятных условиях одна клетка потребляет пищи (по массе) в 30-40 раз больше массы своего тела. Основная часть пищи расходуется в энергетическом обмене, при котором выделяется в среду большое количество продуктов обмена: кислот, спиртов, углекислого газа, водорода и др. Эта особенность микроорганизмов широко используется в практике переработки растительного и животного пищевого и непищевого сырья; она же вызывает явление быстрой порчи пищевых продуктов. Такая способность обусловливается наличием у микроорганизмов большого разнообразия ферментов.

    Питание микроорганизмов

    Микроорганизмы не имеют специальных органов питания. Поступление питательных веществ и воды в клетку и выделение продуктов обмена во внешнюю среду происходит через всю поверхность клеток. Проникновение питательных веществ в клетку всегда осуществляется за счет явлений осмоса и диффузии.  Явление осмоса всегда возникает там, где есть два раствора с разной концентрацией веществ, разделенных между собой полупроницаемой мембраной.

    Проникновение через полупроницаемую перегородку воды и растворенных в ней веществ происходит по-разному. Вода всегда стремится в сторону большей концентрации, чтобы разбавить раствор. Скорость движения будет тем больше, чем больше будет разность концентраций растворенных веществ по обе стороны полупроницаемой мембраны. Каждое растворенное вещество движется в ту сторону, где его концентрация ниже. Движущей силой будет возникшее осмотическое давление т. е. та энергия, с какой оба вещества будут стремиться выровнять свою концентрацию.

    Проникновение каждого вещества через перегородку прекращается лишь тогда, когда по обе стороны концентрация его станет одинаковой. В зависимости от концентрации веществ в окружающей среде микробная клетка может находиться в трех состояниях.

    1.Тургoр - если осмотическое давление микробных клеток, обусловленное растворенными в клеточном соке веществами, несколько выше, чем в среде, то за счет притока из нее воды в клетке создается определенное упругое напряжение. Протопласт клетки при этом прижимается к клеточной оболочке, слегка растягивая ее. Находясь на пищевых продуктах в таком состоянии, микробы проявляют большую активность и быстро вызывают порчу. Поэтому в пищевой промышленности часто используются такие методы консервирования пищевых продуктов, как сушка и вяление, чтобы микробы не переходили в состояние тургора и не вызывали их порчу.

    2.Плазмолиз - если микроорганизм попадает в субстрат, осмотическое давление которого выше, чем в клетке, то цитоплазма отдает воду во внешнюю среду. Питательные вещества в клетку не поступают, содержимое клетки уменьшается в объеме, и протопласт отстает от клеточной оболочки. Это явление широко используется в пищевой промышленности, когда продукты питания консервируются сахаром и солью.

    3. Плазмомтис- явление, обратное плазмолизу. Наступает при чрезмерно низком осмотическом давлении внешней среды, когда вследствие высокой разности осмотических давлений цитоплазма быстро переполняется водой. Это может привести к разрыву клеточной оболочки, что наблюдается, например, при помещении бактерий в дистиллированную воду.

    Требования большинства микроорганизмов к источникам питания разнообразны. Однако, учитывая некоторые общие особенности питания микробов, их принято делить на две группы.

     Автотрофы - питаются, подобно зеленым растениям, минеральными веществами, синтезируя из этих простых веществ все сложные компоненты клетки. Автотрофные (от греч. аutos - сам, trophe - пища) микроорганизмы способны в качестве единственного источника углерода для синтеза органических веществ тела использовать углекислоту и ее соли.

    Среди автотрофных микроорганизмов имеются виды, которые ассимилируют углекислый газ, как и зеленые растения, используя солнечную энергию, - их называют - фотосинтезирующими. К ним относятся некоторые пигментные бактерии, например зеленые и пурпурные серобактерии.

    Другие автотрофные микроорганизмы в процессе синтеза органических соединений используют энергию химических реакций окисления некоторых минеральных веществ. Такие микроорганизмы называют хемосинтезирующими. К ним относятся бактерии, окисляющие водород с образованием воды (водородные бактерии), аммиак в азотистую кислоту (нитрифицирующие бактерии), сероводород до серной кислоты (бесцветные серобактерии).

    Гетеротрофы (от гречheteros - другой) - подобно животным организмам нуждаются в органических соединениях, которые служат одновременно источником углерода и энергии. Их подразделяют на две группы:

    - сапрофиты (от греч. sapros - гнилой, phyton - растение) - они живут за счет использования органических веществ различных субстратов животного и растительного происхождения. К ним относятся все те микробы, которые разлагают органические вещества в природе (в почве, воде), вызывают порчу пищевых продуктов или используются в процессах переработки растительного и животного сырья;

    -паразиты - они способны развиваться только в теле других организмов, питаясь органическими веществами, входящими в состав последних. К паразитам принадлежат возбудители заболеваний человека, животных и растений.

    Дыхание микроорганизмов

    Описанные выше процессы ассимиляции пищи протекают с затратой энергии. Потребность в энергии обеспечивается процессами энергетического обмена, сущность которых заключается в окислении органических веществ, сопровождаемом выделением энергии. Получаемые при этом продукты окисления выделяются в окружающую среду.

    Окисление веществ может происходить разными путями:

    • прямым, т.е. присоединением к веществу кислорода;

    • непрямым, т.е. дегидрогенированием (отнятием водорода).

    Способы получения энергии у микроорганизмов разнообразны. В 1861 г. французский ученый Л.Пастер впервые обратил внимание на уникальную способность микроорганизмов развиваться без доступа кислорода, в то время как все высшие организмы - растения и животные - могут жить только в атмосфере, содержащей кислород.

    По этому признаку (по типам дыхания) Л.Пастер разделил микроорганизмы на две группы - аэробы и анаэробы.

    Аэробы для получения энергии осуществляют окисление органического материала кислородом воздуха. К ним относятся грибы, некоторые дрожжи, многие бактерии и водоросли. Многие аэробы окисляют органические вещества полностью, выделяя в виде конечных продуктов СО2 и Н2О. Этот процесс в общем виде может быть представлен следующим уравнением:

    С6 Н12 О6 + 6О2 = 6СО2 + 6Н2 О + 2822 кДж.

    Анаэробы - это микроорганизмы, способные к дыханию без использования свободного кислорода. Анаэробный процесс дыхания у микроорганизмов происходит за счет отнятия у субстрата водорода. Типичные анаэробные дыхательные процессы принято называть брожениями. Примерами такого типа получения энергии могут служить спиртовое, молочнокислое и маслянокислые брожения. Рассмотрим на примере спиртового брожения:

    С6 Н12 О6 = 2С2 Н5 ОН + 2СО2 + 118 кДж.

    Отношение анаэробных микроорганизмов к кислороду различно. Одни из них совсем не переносят кислорода и носят название облигатных, или строгих, анаэробов. К ним относятся возбудители маслянокислого брожения, столбнячная палочка, возбудители ботулизма. Другие микробы могут развиваться как в аэробных, так и в анаэробных условиях.

    Их называют - факультативными, или условными анаэробами; это молочнокислые бактерии, кишечная палочка, протей и др.

    В энергетическом отношении аэробное дыхание во много раз выгоднее анаэробного. Так, при аэробном процессе окисления глюкозы до углекислого газа и воды высвобождается примерно, в 25 раз больше энергии, чем при анаэробном процессе (например, спиртовом брожении). Это объясняется тем, что конечные продукты, получающиеся в результате анаэробного окисления, всегда представляют собой сложные органические соединения, имеющие большой запас энергии - спирты, кислоты и др. В связи с этим многие процессы брожения находят применение для получения ценных пищевых и технических продуктов.
    Ферменты микроорганизмов

    Ферменты (энзимы) - вещества, способные каталитически влиять на скорость биохимических реакций. Они играют важную роль в жизнедеятельности микроорганизмов. Открыты ферменты в 1814 г. русским академиком К.С.Кирхгофом.

    Как и другие катализаторы, ферменты в реакциях превращения веществ принимают участие лишь в качестве посредников. Количественно в реакциях они не расходуются. Ферменты микроорганизмов обладают целым рядом свойств:

    1) При температуре до 40-50ºС увеличивается скорость ферментативной реакции, но затем скорость падает, фермент перестает действовать. При температуре выше 80°С практически все ферменты необратимо инактивируются.

    2) По химической природе ферменты бывают однокомпонентными, состоящими только из белка, и двухкомпонентными, состоящими из белковой и небелковой частей. Небелковая часть у ряда ферментов представлена тем или иным витамином.

    3) На активность фермента оказывает большое влияние рН среды. Для одних ферментов наилучшей является кислая среда, для других - нейтральная или слабощелочная.

    4) Ферменты обладают высокой активностью. Так, молекула каталазы разрушает в минуту 5 млн молекул пероксида водорода, а 1 г амилазы при благоприятных условиях превращает в сахар 1 т крахмала.

    5) Каждый фермент обладает строгой специфичностью действия, т. е. способностью влиять только на определенные связи в сложных молекулах или лишь на определенные вещества. Например, амилаза вызывает расщепление только крахмала, лактаза - молочного сахара, целлюлаза - целлюлозы и т. д.

    6) Ферменты, присущие данному микроорганизму и входящие в число компонентов его клетки, называются конститутивными. Существует и другая группа - ферменты индуцируемые(адаптивные), которые вырабатываются клеткой только при добавлении к среде вещества (индуктора), стимулирующего синтез данного фермента. В этих условиях микроорганизм синтезирует фермент, которым, он не обладал.

    7) По характеру действия ферменты подразделяются на экзоферменты, которые выделяются клеткой во внешнюю среду, и эндоферменты, которые прочно связаны с внутренними структурами клетки и действуют внутри нее.

    8) Хотя ферменты вырабатываются клеткой, но и после ее смерти они временно еще остаются в активном состоянии и может произойти автолиз (от греч. аutos - сам, lysis - растворение) - саморастворение или самопереваривание клетки под влиянием ее собственных внутриклеточных ферментов.

    В настоящее время известно более 1000 ферментов. Ферменты делятся на 6 классов:

    1-й класс - оксидоредуктазы - играют большую роль в процессах брожения и дыхания микроорганизмов, т. е. в энергетическом обмене.

    2-й класс - трансферазы (ферменты переноса) катализируют реакции переноса групп атомов от одного соединения к другому.

    3-й класс -  гидролазы (гидролитические ферменты). Они катализируют реакции расщепления сложных соединений (белки, жиры и углеводы) с обязательным участием воды.

    4-й класс - лиазы включают двухкомпонентные ферменты, отщепляющие от субстратов определенные группы (СО2, Н2О, NНз и т. д.) негидролитическим путем (без участия, воды).

    5-й класс - изомеразы - это ферменты,.катализирующие обратимые превращения органических соединений в их изомеры.

    6-й класс -  лигазы (синтетазы) - это ферменты, катализирующие синтез сложных органических соединений из более простых. Лигазы играют большую роль в углеводном и азотном обмене микроорганизмов.

    Применение ферментов микробов в пищевой и легкой промышленности позволяет значительно интенсифицировать технологический процесс, повысить выход и улучшить качество готовой продукции. Препараты амилолитических ферментов применяют при производстве этилового спирта из крахмалосодержащего сырья вместо зернового солода, а в хлебопекарной промышленности взамен солода при приготовлении заварного ржаного хлеба; добавляют грибные амилазы и в пшеничное тесто. Поскольку в этом препарате помимо амилазы имеются, хотя и в небольшом количестве, другие ферменты (мальтаза, протеазы), процесс изготовления теста ускоряется, увеличиваются объем и пористость хлеба, улучшаются его внешний вид, аромат и вкус. Применение этих ферментных препаратов в пивоварении позволяет частично заменить солод ячменем. С помощью грибной глюкоамилазы получают глюкозную патоку и кристаллическую глюкозу из крахмала. Пектолитические ферментные грибные препараты используют в соко-морсовом производстве и виноделии. В результате разрушения пектина этими ферментами ускоряется процесс выделения сока, повышается его выход, фильтрация и осветление. Ферментные препараты, содержащие микробные протеазы, используют для повышения стойкости (предохранения от белкового помутнения) вина и пива, а в сыроделии - взамен (частично) сычужного фермента. Целесообразно применять микробные протеазы для размягчения мяса, ускорения созревания мяса и сельди, получения из отходов рыбной и мясной промышленности пищевых гидролизатов и для других технологических процессов переработки животного и растительного сырья.


    Химический состав микроорганизмов

    По составу веществ клетки микроорганизмов мало чем отличаются от клеток животных и растений. В них содержится 75-85% воды, остальные 16-25% составляет сухое вещество. Вода в клетке находится в свободном и в связанном состоянии. Связанная вода входит в состав коллоидов клетки (белки, полисахариды и др.) и с трудом высвобождается из них. Свободная вода участвует в химических реакциях, служит растворителем для различных соединений, образующихся в клетке в процессе обмена веществ.

    Сухое вещество клетки состоит из органических и минеральных веществ.

    Если содержание сухого вещества принять за 100%, то на долю минеральных веществ приходится 2-14%, остальная часть сухого вещества представлена органическими соединениями:

    белки - до 52%,

    полисахариды - до 17%,

    нуклеиновые кислоты (РНК до 16%, ДНК до 3%),

    липиды - до 9%

    Эти соединения входят в состав различных клеточных структур микроорганизмов и выполняют важные физиологические функции. В клетках микроорганизмов находятся и другие вещества - органические кислоты, их соли, пигменты, витамины и др.

    ТЕМА 1.3 ВЛИЯНИЕ УСЛОВИЙ ВНЕШНЕЙ СРЕДЫ НА МИКРООРГАНИЗМЫ. РАСПРОСТРАНЕНИЕ МИКРООРГАНИЗМОВ В ПРИРОДЕ.

    Жизнедеятельность микробов находится в зависимости от условий окружающей среды. Создавая те или иные условия в среде, где развиваются микроорганизмы, можно способствовать развитию полезных и подавлять жизнедеятельность вредных микробов. Большинство пищевых продуктов по химическому составу представляют собой благоприятную питательную среду для различных микроорганизмов. Поэтому очень важно обратить внимание на то, что пищевые продукты могут хорошо сохраняться только при создании неблагоприятных условий для развития в них вредных микробов.

    Оптимум - величина, при которой лучше всего проявляются отдельные функции микроорганизма и его жизнедеятельность в целом.

     Максимум и минимум - верхний и нижний пределы величины фактора, выше и ниже которой жизнедеятельность микроорганизмов почти не проявляется.

    Пороговый эффект - неожиданно, без каких бы то ни было предупреждающих сигналов, следующее, даже небольшое изменение во влиянии фактора внешней среды может оказаться критическим.

    Факторы среды подразделяются на 3 группы: физические, химические и биологические.

    Физические факторы, влияющие на микроорганизмы

    ВЛИЯНИЕ ТЕМПЕРАТУРЫ

    Температура - один из главных факторов, определяющих развитие микроорганизмов. Интервал между максимальными и минимальными значениями у разных микроорганизмов неодинаков. Например, пределы температуры развития плесневых грибов составляют от - 8ºC до 60ºC, т.е. интервал составляет почти 70ºC, тогда как у других он равен всего 1-2ºC. В зависимости от оптимальной температуры развития микробы подразделяются на группы.

    Психрофилы - холодолюбивые микроорганизмы, хорошо растут при относительно низких температурах. Для них характерны: минимум (-10 - 0°С), оптимум (10-15°С), максимум (около 30°С). К ним относятся микробы, обитающие в почве полярных стран, в северных морях, на охлажденных и замороженных продуктах.

    Мезофилы - микроорганизмы, для которых температурный минимум лежит около 5-10ºС, оптимум - около 25-35ºС, максимум - в пределах 40-50ºС. Представители этой группы чаще остальных вызывают порчу пищевых продуктов, хранящихся без охлаждения.

    Термофилы - теплолюбивые микроорганизмы, лучше развиваются при относительно высоких температурах. Для них характерны: минимум (около 30°С), оптимум (50-65°С), максимум (70-80°С), а для некоторых и более. Обитают они в некоторых почвах, пищеварительном тракте животных, горячих источниках, в почве южных широт.

    Влияние высоких температур. Температуры, превышающие максимальные, действуют на микробы губительно. Высокие температуры микроорганизмы переносят значительно хуже, чем низкие. Более устойчивы к нагреванию термофилы, обладающие повышенной термоустойчивостью.

    Термоустойчивость - это способность микроорганизмов выдерживать длительное нагревание при температурах, превышающих температурный максимум их развития. Термоустойчивость связана с наличием у микроорганизмов спор. Наиболее термоустойчивыми являются споры бактерий. На губительном действии высоких температур основаны различные методы уничтожения микроорганизмов в пищевых продуктах. Это кипячение, варка, бланширование, обжарка, а также пастеризация и стерилизация.

    Стерилизация - это процесс полного уничтожения микроорганизмов, в том числе и спорообразующих, под действием высоких температур. Существует много приемов и методов стерилизации. Чаще всего ее проводят в специальных котлах-автоклавах. За счет герметизации и накапливания образующегося при нагреве пара в них создается повышенное давление и температура кипения воды повышается. При избыточном давлении в 0,5 атм. температура равна 112°С, 1 атм. - 121°С и т. д. Существуют различные способы стерилизации: термическая - кипячением, прокаливанием в пламени, горячим воздухом, насыщенным паром под давлением (автоклавирование), текучим паром; холодная - фильтрованием (через фильтры, которые задерживают бактерии). Стерилизацией пользуются при производстве мясных, рыбных, овощных и крупяных консервов и т. д.

    Пастеризация - это нагревание продукта чаще при температуре 63-80ºС в течение 20-40 мин. Иногда пастеризацию проводят кратковременным (в течение нескольких секунд) нагреванием до температуры 90-100°С. При пастеризации погибают не все микроорганизмы. Некоторые термоустойчивые бактерии, а также споры многих бактерий остаются живыми. В связи с этим пастеризованные продукты следует немедленно охлаждать до температуры не выше 10°С и хранить на холоде, чтобы задержать прорастание спор и paзвитие сохранившихся клеток. Пастеризуют молоко, вино, пиво, икру, фруктовые соки и некоторые другие продукты.

    Влияние низких температур. К низкой температуре микроорганизмы более устойчивы. Несмотря на то, что размножение и биохимическая aктивность микробов при температуре ниже минимальной прекращаются, гибель самих клеток чаще всего не наступает, они переходят в состояние анабиоза («скрытой жизни»). В таком состоянии многие микроорганизмы, и особенно их споры, остаются жизнеспособными длительное время. При повышении температуры споры прорастают в вегетативные клетки и начинают активно размножаться. Низкие температуры используют для сохранения скоропортящихся продуктов. Их хранят либо в охлажденном состоянии - при температуре от 10°С до -2°С, либо в замороженном виде - при температуре от -12 до -30°С. При охлаждении продуктов лучше, чем при замораживании, сохраняются их натуральные свойства, однако рост на них микроорганизмов не исключается, а лишь замедляется, поэтому сроки хранения таких продуктов непродолжительны. Гибель микроорганизмов при замораживании в основном обусловлена температурой и скоростью замораживания. Особенно для микробов губительно медленное замораживание. При хранении замороженных продуктов развитие в них микроорганизмов исключительно, поэтому они сохраняются доброкачественными значительно дольше, чем охлажденные. Губительно действуют на микроорганизмы повторное замораживание и оттаивание.

    ВЛИЯНИЕ ВЛАЖНОСТИ СРЕДЫ

    Влажность среды оказывает большое влияние на развитие микроорганизмов. Вода входит в состав из клеток (до 85%) и поддерживает тургорное давление в них. Минимальная влажность среды, при которой возможно еще развитие бактерий, равна 20-30%, а для многих плесеней 11-13%, а в отдельных случаях даже 6% (хлопковое волокно). Потребность во влаге у различных микроорганизмов колеблется в широких пределах.

    Различают микроорганизмы гидрофиты - влаголюбивые, мезофиты - средневлаголюбивые и ксерофиты - сухолюбивые. Бактерии и дрожжи в преобладающем большинстве гидрофиты.

    В связи с замедлением жизнедеятельности бактерий при высушивании сушку применяют как средство консервирования зерновых, крупяных товаров, мяса, рыбы, фруктов, овощей и др. Сухие продукты всегда coдepжат более или менее значительное количество различных микроорганизмов. В высушенном состоянии они хотя и не проявляют своей жизнедеятельности, но многие сохраняют жизнеспособность в течение более или менее длительного времени. Например, брюшнотифозные и туберкулезные бактерии, многие стафилококки могут сохраняться в сухом виде неделями и месяцами, высушенные молочнокислыe бактерии сохраняются жизнеспособными годами (отсюда возможность применять сухие молочные закваски). Для сохранения сухих продуктов без порчи большое значение имеют относительная влажность, температура и соблюдение товарного соседства между продуктами при хранении, так как продукты, богатые влагой, легко ее теряют, а сухие обладают способностью поглощать влагу. Широко применяется метод леофильной сушкимолочнокислыx заквасок и других культур микроорганизмов. Высушивание ведется при температуре ниже нуля. При этом микроорганизмы не гибнут, а переходят в анабиотическое состояние, в котором могут находиться продолжительное время. Одним из методов консервирования пищевых продуктов является сублимация - обезвоживание при низкой температуре и высоком вакууме, которое сопровождается испарением воды, быстрым охлаждением и замораживанием. Образовавшийся в продукте лед легко возгоняется, минуя жидкую фазу. Продолжительность сохранения пищевых продуктов более - 2 лет. Сублимационная сушка обеспечивает сохранение всех сахаров, витаминов, ферментов и других компонентов. Высушивание в вакууме при низкой температуре не убивает бактерии и вирусы.

    ВЛИЯНИЕ КОНЦЕНТРАЦИИ ВЕЩЕСТВ, РАСТВОРЕННЫХ В СРЕДЕ

    Для жизнедеятельности микроорганизмов большое значение имеет осмотическое давление среды, которое определяется концентрацией растворенных в ней веществ. Находясь в субстратах с высоким осмотическим давлением, микроорганизмы не могут осуществлять нормальный обмен веществ. Значительная часть воды из цитоплазмы уходит в окружающую среду. Клетка обезвоживается, и наступает состояние плазмолиза. На этом основаны некоторые способы сохранения различных продуктов с помощью концентрированных растворов сахара и соли. При добавлении в продукт 12%-ной поваренной соли существенно замедляется развитие многих микроорганизмов, а при 20%-ном содержании соли жизнедеятельность почти всех микробов прекращается полностью. При использовании в целях консервирования сахара (варенье, джем, повидла и др.) для достижения необходимого эффекта его добавляют в значительно больших количествах - около 70%. Применение концентрированных растворов сахара или соли для сохранения ягод, плодов, овощей, мяса, рыбы и др., фактически является процессом сушки продукта посредствам осмоса, поскольку при этом одновременно возникают два противотока: из раствора в продукт диффундирует растворенное вещество (соль, сахар), а из продукта в раствор - вода. В продукте происходит снижение активности в водычто делает среду неблагоприятной для развития микроорганизмов и предотвращает порчу продукта.

    Среди микроорганизмов имеются осмофильные, которые способны развиваться в сильноконцентрированных средах. Например, хорошо переносят большие концентрации сахара некоторые дрожжи, стафилококки, плесневые грибы. Микробы, устойчивые к высоким концентрациям поваренной соли, носят название галофильных (солелюбивые).

    ВЛИЯНИЕ РАЗЛИЧНОГО РОДА ИЗЛУЧЕНИЙ

    Свет - рассеянный солнечный свет мало влияет на жизнедеятельность микробов, на прямой солнечный свет вызывает довольно быструю гибель большинства из них. Наиболее заметным бактериоубивающим (бактерицидным) действием обладает часть светового спектра с короткимидлинами волн (ультрафиолетовая, фиолетовая, голубая).

    Ультрафиолетовые лучи - вызывают либо гибель, либо мутации микроорганизмов в зависимости от вида микробов, дозы и продолжительности облучения. УФ-лучи применяются для дезинфекции воздуха в медицинских и производственных помещениях, в холодильных камерах, для обеззараживания производственного оборудования, упаковочных материалов тары. Обработка воздуха в течение 6 ч уничтожает до 80% микробов.

    Ионизирующее излучение - к ним относятся космические, рентгеновские и радиоактивные излучения (а-,в-, у-лучи), возникающие при распаде радиоактивных элементов. Они имеют наиболее короткую длину волны и обладают высокой проникающей способностью. В малых дозах эти лучи действуют стимулирующе - повышают интенсивность жизненных процессов; увеличение дозы приводит к возникновению мутаций, а продолжение ее роста - к гибели. Гибель микроорганизмов происходит при дозах облучения, в сотни и тысячи раз превосходящих смертельную дозу для животных.

    Радиоволны - радиоволны длиной порядка сотен метров и более, по-видимому, не действуют на микроорганизмы. Короткие радиоволны (длиной 10-50 м) и особенно ультрарадиоволны (метровые и меньшей длины) губительны для микроорганизмов. При прохождении коротких и ультрарадиоволн через среду возникает переменный ток высокой (Вч) и сверхвысокой (сВч) частот. Поглощенная помещенным в электромагнитное поле объектом (продуктом, микробными клетками) электрическая энергия преобразуется в тепловую - происходит быстрый и высокий нагрев объекта. Благодаря специфическим особенностям этого способа нагревания перспективно его применение для пастеризации и стерилизации пищевых продуктов. Сверхвысокочастотную электромагнитную обработку пищевых продуктов применяют на предприятиях общественного питания. Время тепловой обработки различных изделий до их готовности сокращается во много раз, по сравнению с традиционным способом, при значительном снижении числа микроорганизмов. При этом улучшаются санитарно-гигиенические и технические условия работы.

    Ультразвук (УЗ) - это механические колебания с частотами выше 20000 колебаний (20 кГц), что находится за пределами частот, воспринимаемых человеком. УЗ-колебания ускоряют многие химические реакции, вызывают распад высокомолекулярных соединений, коагуляцию белков, инактивацию ферментов и токсинов, могут привести к разрыву клеточной стенки, а иногда и разрушению внутриклеточных структур. Практическое использование УЗ-волн с целью стерилизации эффективно в основном для жидких пищевых продуктов (молока, фруктовых соков, вин), воды, для мойки и стерилизации стеклянной тары.
    Химические и биологические факторы, влияющие на микроорганизмы

    ВЛИЯНИЕ РЕАКЦИИ СРЕДЫ (PH)

    Водородный показатель реакции среды рН показывает степень ее кислотности (рН от 7 до 1) или щелочности (рН от 7 до 14). Нейтральная реакция среды соответствует 7. Пределы эти для одних микроорганизмов широки, для других значительно уже. В зависимости от отношения к рН среды все микроорганизмы можно разделить на три группы.

    Нейтрофилы - предпочитают нейтральную среду (6,8-7,3). Это почти все гнилостные бактерии, возбудители пищевых отравлений, бактерии группы кишечной палочки и др.

    Ацидофилы (кислотолюбивые) развиваются при оптимальном рН 4 и ниже. Это уксуснокислые, молочнокислые и другие бактерии, продуцирующие органические кислоты и плесневые грибы.

    Алкалофилы (щелочелюбивые) развиваются при оптимальном рН 9 и выше. Это некоторые представители бактерий кишечной группы - холерный вибрион и др. Влиянием кислотности на микроорганизмы широко пользуются в микробиологической практике при переработке и хранении пищевых товаров. Так, подавляющее действие кислот на гнилостные микроорганизмы положено в основу квашения овощей. На этом же принципе основано получение кисломолочных продуктов.

    ДЕЙСТВИЕ ЯДОВИТЫХ ВЕЩЕСТВ

    Многие химические вещества действуют губительно на микроорганизмы. Такие вещества называютантисептиками. Их действие на микроорганизмы зависит от концентрации и продолжительности воздействия, а также рН среды и температуры. Чувствительность различных видов к одному и тому же антисептику неодинакова. В связи с тем, что некоторые из них придают продуктам неприятный вкус и запах и что большинство антисептических веществ в определенной степени ядовиты для человека, применение их для обработки пищевых товаров ограничено. Бактерицидные химические вещества по их действию на бактерии подразделяются на ряд групп:

    поверхностно-активные вещества - способны накапливаться на поверхности и вызывать резкое снижение поверхностного натяжения, что приводит к нарушению нормального функционирования клеточной стенки и цитоплазматической мембраны. К ним относятся жирные кислоты, в том числе и мыла, которые вызывают повреждение только клеточной стенки и не проникают в клетку;

    фенол, крезол и их производные - первоначально повреждают клеточную стенку, а затем и белки клетки; красители - обладают свойством задерживать рост бактерий. В основе их действия лежит выраженное родство к фосфорнокислым группам нуклеопротеидов. К красителям с бактерицидными свойствами относят бриллиантовый зеленый, риванол, трипафлавин, акрифлавин и др.;

    соли тяжелых металлов (свинец, медь, цинк, серебро, ртуть) вызывают коагуляцию белков клетки. При взаимодействии соли тяжелого металла с белком образуются альбуминат металла и свободная кислота. Ряд металлов (серебро, золото, медь, олово, свинец и др.) обладает олигодинамическим действием ( бактерицидная способность). Доказано, что в воде, находящейся в контакте с металлическим серебром, в которой не обнаруживаются обычным методом даже следы растворившегося металла, микроорганизмы погибают;

    окислители - к ним относятся хлор, поражающий дегидразы, гидролазы, амилазы, протеазы бактерий, широко используемый для дезинфекции питьевой вoды, тары, оборудования, инвентаря. В этих же целях используют озон.

    формальдегид употребляют в виде 40%-ного раствора - так называемого формалина. Его противомикробное действие объясняется тем, что он присоединяется к аминогруппам белков и вызывает их денатурацию. Формальдегид убивает как вегетативные формы, так и споры.

    Применение антисептиков для консервирования пищевых продуктов ограничено. Доза антисептика должна быть достаточной, чтобы обеспечить надлежащее консервирующее действие, но безвредной для человека, и не влиять отрицательно на продукт. Поэтому к использованию допущены очень немногие антисептики в малых дозах (от сотых до одной-двух десятых процента) и только для некоторых пищевых продуктов. Это салициловая кислота, которая эффективно подавляет развитие плесневых грибов. В связи с токсичностью для человека применение ее для защиты пищевых товаров постепенно снижается, и в последнее время все чаще используют лимонную кислоту. Бензойная кислота содержится в бруснике, клюкве и ее применяют для консервирования полуфабрикатов из плодово-ягодного сырья и рыбных и мясных пресервов. Сорбиновая кислота (естественная, выделенная из ягод рябины) находит все более широкое применение для консервирования плодоовощной продукции. Этиловый спирт в разведенном состоянии (50-70°) более активен, чем ректификат (96°). Спиртовые настойки и экстракты плодов и ягод являются более стойкими, обычно не поддающимися микробной порче длительное время, тогда как водные экстракты быстро разрушаются микроорганизмами. Углекислый газ (СО2) абсолютно безвреден при введении в пищевые продукты, обладает способностью быстро и полностью удаляться из них после извлечения продуктов из камеры хранения. Находясь в атмосфере в количестве 20-30%, углекислый газ значительно замедляет жизнедеятельность большинства микробов, а концентрации его 60-80% и больше практически прекращают их развитие. Углекислый газ обладает свойством легко проникать через различные материалы, поэтому подавляет развитие микробов не только на поверхности, но и в толще продуктов (в фарше, колбасах и т.д.). Углекислый газ при его промышленном получении дешев, недефицитен, практически безопасен при использовании. На антисептических свойствах дыма, получаемого от некоторых пород деревьев, основано копчение рыбных и мясных продуктов. Содержащиеся в дыме альдегиды, кетоны, фенолы, спирты, смолы, кислоты и другие вещества оказывают бактерицидное действие на микроорганизмы.

    Микроорганизмы в природных условиях входят составной частью в биоценоз (совокупность растений и животных, населяющих участок среды обитания с более или менее однородными условиями жизни). Микробы находятся в природе в ассоциациях, между которыми происходит постоянная борьба за существование. Взаимоотношения между этими организмами носят весьма разнообразный характер и существенно сказываются на их развитии. Между различными группами микробов существует несколько типов взаимоотношений.

    Симбиоз представляет собой сожительство организмов разных видов, обычно приносящее им взаимную пользу; они совместно развиваются лучше, чем каждый из них в отдельности. Например, сожительство гриба и синезеленой водоросли; азотфиксирующих микробов и целлюлозо-разрушающих бактерий; симбиоз клубеньковых бактерий с бобовыми растениями; различных грибов с корнями растений; и т.д.

    Метабиоз - такой вид взаимоотношений, когда один организм продолжает процесс, вызванный другим, освобождая его от продуктов жизнедеятельности и тем самым создавая условия для его дальнейшего развития (нитрифицирующие и аммонифицирующие бактерии).

    Сателлизм - один из сожителей, называемый благоприятствующим микробом, стимулирует рост другого сочлена (некоторые дрожжи и сарцины, продуцирующие - аминокислоты, витамины и другие вещества, способствуют росту более требовательных к питательным средам микробов).

    Синергизм характеризуется усилением физиологических функций у членов микробной ассоциации (дрожжи и молочнокислыe бактерии, фузобактерии и боррелии). Одной из форм симбиоза являетсявирогения - совместное сосуществование некоторых бактерий, дрожжей и простейших с вирусами. Установлены сочетания разных вирусов и бактерий: вируса омской геморрагической лихорадки с возбудителями бруцеллеза, туляремии; вируса гепатита - с Candida.

    Антагонизм - при этих взаимоотношениях происходит борьба за кислород, пищевые вещества и место обитания. Бактерии, грибы, высшие растения вырабатывают вещества, получившие названия антибиотиков, которые губительно действуют на другие микробы. Они широко применяются в лечении многих инфекционныx болезней. В обезвреживании внешней среды от патогенных микро, организмов вследствие антагонизма большую роль играют фаги, широко распространенные в почве и воде, и фитонциды - летучие вещества многих растений.

    РАСПРОСТРАНЕНИЕ МИКРООРГАНИЗМОВ В ПРИРОДЕ

    Микробы повсеместно распространены в окружающей нас среде. Они находятся в почве, воде, воздухе на растениях, в пищевых продуктах, в организме человека, животных. Глубокие знания о микроорганизмах во внешней среде приобретают особое значение в условиях постоянно и быстро развивающейся промышленности, роста городов и усиливающегося в целом влияния человека на состояние окружающей среды. Особенно серьезным становится положение с пресными водами, загрязняемыми как промышленными и бытовыми отходами, так и разнообразной микрофлорой. Состав микрофлоры, его формирование и динамика изменений зависит от окружающей среды, а также от свойств и состояния каждого объекта.

    Для товароведов, пищевиков и работников общественного питания наибольшее значение имеют изучение микрофлоры почвы, воздуха, знакомство с микрофлорой тела человека.


    Микрофлора почвы

    Почва является хорошей средой для обитания микроорганизмов в связи с наличием в ней питательных веществ и влаги. Почва хорошо защищает их от влияния прямого солнечного света, высушивания, вследствие чего количество микробов в 1 г почвы достигает колоссальных размеров: от 200 млн. бактерий в глинистой почве, до 5 млрд. в черноземной. В 1 г пахотного слоя почвы содержится 1-10 млрд. бактерий. Наибольшее количество (1000000 в 1 мм3) микробов содержится в верхнем слое почвы на глубине 5-15 см. В глубинных слоях встречаются единичные микробы; они обнаружены и в артезианской воде.

    Обсемененность почвы микроорганизмами находится в тесной зависимости от степени загрязнения ее фекальными массами и мочой, а также от характера обработки и удобрения.

    Из почвы микробы с пылью или с потоками дождевой или снеговой воды попадают в реки, озера и другие природные воды, в воздух. Таким образом, почва является первоисточником микробов в природных условиях.

    Ценным показателем санитарного состояния почвы является обнаружение в ней бактерий Е.coli (кишечная палочка) и близких к ней бактерий, а также Str. facealis (фекального стрептококка), Clostridium perfringens (клостридии перфрингенс).


    Микрофлора воды

    Природные воды, как и почва, являются естественной средой обитания многих микроорганизмов, где они способны жить, размножаться, участвовать в процессах круговорота углерода, азота, серы, железа и других элементов. Количественный и качественный состав микрофлоры природных вод разнообразен.

    По степени микробного загрязнения различают три зоны водоема:

    1) Полисапробная зона - сильно загрязненная вода, бедная кислородом и богатая органическими соединениями. Число бактерий в 1 мл достигает 1 000 000 и более; преобладают Е.coli и анаэробные бактерии, вызывающие процессы гниения и брожения.

    2) Мезосапробная зона - зона умеренного загрязнения, где происходит минерализация органических веществ с интенсивным окислением и выраженной нитрификацией. Число бактерий в 1 мл составляет сотни тысяч; количество Е. coli значительно меньше.

    3) Олигосапробная зона - характерна для чистой воды. Количество микробов незначительно, в 1 мл насчитывается несколько десятков или сотен; Е. coli в этой воде отсутствует.

    Водопроводная вода считается хорошей, если общее количество микробов в 1 мл равно 100, сомнительной при 100-150 микробах, загрязненной - при 500 и более. В воде колодцев и открытых водоемов число микробов в 1 мл не должно быть более 1000. Кроме того, качество воды определяется по наличию в ней Е. coli и ее вариантов. Вода является мощным фактором передачи ряда инфекционных заболеваний: брюшного тифа, сальмонеллезных гастроэнтеритов, холеры, дизентерии, лептоспирозов и др.
    Микрофлора воздуха

    Воздух является неблагоприятной средой для жизни микроорганизмов. В нем они не находят пищи, подвергаются высушиванию, губительному действию прямых солнечных лучей и поэтому большая часть их погибает.

    Состав микробов воздуха весьма разнообразен. Он зависит от степени загрязнения воздуха минеральными и органическими взвесями, температуры, осадков, характера местности, влажности и других факторов. Чем выше концентрация в воздухе пыли, дымов, копоти, тем больше микробов. Над поверхностью гор, морей арктических стран, океанов микробы встречаются редко. Например, воздух Арктики содержит 2-3 микроба на 20 м3. В лесу, особенно хвойном, микробов очень мало, на них оказывают губительное действие летучие вещества растений - фитонциды, обладающие бактерицидными свойствами. Над Москвой на высоте 500 м в 1 м3 воздуха обнаруживают 1100-2700 микробов, в то время как на высоте 2000 м - от 500 до 700. В 1 г пыли содержится до 1 млн бактерий. Через воздух могут передаваться вместе с каплями слизи и мокроты при чиханье, кашле, разговоре возбудители гриппа, кори, скарлатины, дифтерии, коклюша, стафилококковой, стрептококковой и менингококковой инфекций, ангин, острых катаров дыхательных путей, туберкулеза, оспы, легочной формы чумы и других заболеваний.

    Микробы могут распространяться токами воздуха, воздушно-пылевым и воздушно-капельным путем. При чиханье, кашле, разговоре больной человек выбрасывает в окружающую среду на расстояние 1-1,5 м и более вместе с каплями слизи, мокроты патогенные бактерии. Человек в среднем вдыхает за сутки 12 000-14 000 л воздуха, причем 99,8% микробов, содержащихся в воздухе, задерживаются в дыхательных путях.
    1   2   3   4   5


    написать администратору сайта