Теория турбинной ступени_РЕДАКТИРОВАННАЯ_2. Лекции по дисциплине Судовые турбинные установки и их эксплуатация Керчь, 2008 г. Удк 621
Скачать 1.65 Mb.
|
Рис.2.2 Зависимость расхода через сопло, площади выходного сечения сопла, скорости и удельного объема е выходном сечении от отношения давлений. Из рисунка видно, что в области дозвукового истечения при уменьшении β1 (в случае уменьшения давления за соплом) расход возрастает. При критическом течении расход становится максимальным. В области сверхзвукового истечения согласно формуле (2.31) расход должен уменьшаться и при β1 = 0 расход должен быть равен нулю. Опыты подтверждают увеличение расхода через сопло при уменьшении β1 в дозвуковой области истечения, но не подтверждают снижение расхода в области сверхзвукового истечения. В действительности, достигнув наибольшего значения при критическом отношений давлений, расход через сопло в дальнейшем при всех значениях остается неизменным и равным максимальному. Причина такого изменения расхода заключается в следующем. В сплошных средах скорость распространения малых возмущений равна местной скорости звука. Поэтому при понижении давления за соплом (это относится к малым возмущениям) в дозвуковом истечении происходит перераспределение давлений по длине всего сопла и в сужающейся части имеет место увеличение скорости потока. При сверхзвуковом режиме в самом узком месте сопла скорость потока становится равной местной скорости звука. Поэтому понижение давления за соплом не приводит к какому-либо перераспределению давлений по длине дозвуковой части сопла, так как малые возмущения не могут преодолеть скорость звука. При этом расход определяется площадью проходного сечения самого узкого места сопла и критическими параметрами в этом сечении. Согласно уравнению (2.7) при установившемся течении (G1t = const) . Из рисунка 2.2 видно, что характерной особенностью дозвуковой области течения (М < 1.0) является более интенсивное нарастание скорости потока, чем удельного объема (dC/C > dV/V). В области сверхзвукового истечения (М > 1.0) наоборот dV/V > dC/C. По этой причине площадь проходного сечения сопла при М < 1.0 уменьшается от входа к выходу, а при М > 1.0 - увеличивается. Из рисунка 2.2 следует, что форма сопла при дозвуковом и звуковом истечении (М < 1.0) должна быть сходящейся (суживающейся), при сверхзвуковом (М > 1.0) сходяще-расходящейся. В сходящейся части сходяще-расходящегося сопла поток расширяется от начального давления до критического, а в расходящейся - от критического до заданного давления P1 < Ркр. Сходяще-расходящееся сопло называется соплом Лаваля, для краткости будем называть его в дальнейшем расходящимся (расширяющимся) соплом. В расходящихся соплах выходное сечение не определяет расхода, так как последний зависит не от площади выходного сечения и параметров в этом сечении, а от площади и параметров узкого сечения. |