Главная страница
Навигация по странице:

  • 2.1. Понятие об ионизирующих излучениях Радиация

  • Электромагнитное излучение

  • Непосредственно ионизирующее излучение

  • Косвенно ионизирующее излучение

  • 2.2. Характеристика отдельных видов излучений Корпускулярные излучения

  • Электромагнитные излучения

  • Рентгеновские излучения.

  • 2.3. Взаимодействие радиоактивных излучений с веществом

  • Взаимодействие рентгеновских

  • Образование электронно-позитронных пар

  • Взаимодействие заряженных частиц с веществом.

  • Тяжелые заряженные частицы

  • Взаимодействие атомов деления с веществом.

  • Взаимодействие нейтронов с веществом.

  • Лекции по РБ. Лекция 1 основные представления о радиоактивности строение атома


    Скачать 0.82 Mb.
    НазваниеЛекция 1 основные представления о радиоактивности строение атома
    АнкорЛекции по РБ.doc
    Дата16.01.2018
    Размер0.82 Mb.
    Формат файлаdoc
    Имя файлаЛекции по РБ.doc
    ТипЛекция
    #14143
    страница2 из 15
    1   2   3   4   5   6   7   8   9   ...   15

    Лекция № 2



    ОСНОВНЫЕ СВОЙСТВА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
    2.1. Понятие об ионизирующих излучениях

    Радиация – излучение (от radiare – испускать лучи) – распространение энергии в форме волн или частиц. Свет, ультрафиолетовые лучи, инфракрасное тепловое излучение, микроволны, радиоволны представляют собой разновидность радиации. Часть излучений получили название ионизирующих благодаря своей способности вызывать ионизацию атомов и молекул в облучаемом веществе.

    Ионизирующее излучение – излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков. Это поток частиц или квантов,способных прямо или косвенно вызывать ионизацию окружающей среды. Ионизирующее излучение объединяет разные по своей физической природе виды излучений. Среди них выделяются элементарные частицы (электроны, позитроны, протоны, нейтроны, мезоны и др.), более тяжелые многозарядные ионы (-частицы, ядра бериллия, лития и других более тяжелых элементов); излучения, имеющие электромагнитную природу (-лучи, рентгеновские лучи).

    Различают два типа ионизирующих излучений: корпускулярное и электромагнитное.

    Корпускулярное излучение – представляет собой поток частиц (корпускул), которые характеризуются определенной массой, зарядом и скоростью. Это электроны, позитроны, протоны, нейтроны, ядра атомов гелия, дейтерия и др.

    Электромагнитное излучение - поток квантов или фотонов (-лучи, рентгеновские лучи). Оно не имеет ни массы, ни заряда.

    Различают также непосредственно и косвенно ионизирующие излучения.

    Непосредственно ионизирующее излучение – ионизирующее излучение, состоящее из заряженных частиц, имеющих кинетическую энергию, достаточную для ионизации при столкновении (электрон, протон, частица и др.).

    Косвенно ионизирующее излучение - ионизирующее излучение, состоящее из незаряженных частиц, и фотонов которые могут создавать непосредственно ионизирующее излучение и (или) вызвать ядерные превращения (нейтроны, рентгеновские и -излучения).

    Основными свойствами ионизирующих излучений является способность при прохождении через любое вещество вызывать образования большого количества свободных электронов и положительно заряженных ионов (т.е. ионизирующая способность).

    Частицы или квант высокой энергии выбивают обычно один из электронов атома, который уносит с собой единичный отрицательный заряд. При этом оставшаяся часть атома или молекулы, приобретя положительный заряд (из-за дефицита отрицательно заряженной частицы), становится положительно заряженным ионом. Это так называемая первичная ионизация.

    Выбитые при первичном взаимодействии электроны обладая определенной энергией сами взаимодействуют со встречными атомами, превращают их в отрицательно заряженный ион (происходит вторичная ионизация). Электроны, которые потеряли в результате столкновений свою энергию, остаются свободными. Первый вариант (образование положительных ионов) происходит лучше всего с атомами, у которых на внешней оболочке имеется 1-3 электрона, а второй (образование отрицательных ионов) – с атомами, у которых на внешней оболочке имеется 5-7 электронов.

    Таким образом, ионизирующий эффект – главное проявление действия радиации высоких энергий на вещество. Именно поэтому радиация и называется ионизирующей (ионизирующими излучениями).

    Ионизация возникает как в молекулах неорганического вещества, так и в биологических системах. Для ионизации большинства элементов, которые входят в состав биосубстратов (это значит для образования одной пары ионов) необходимо поглощение энергии в 10-12 эВ (электрон-вольт). Это так называемый потенциал ионизации. Потенциал ионизации воздуха равен в среднем 34 эВ.

    Таким образом, ионизирующие излучения характеризуются определенной энергией излучения, измеряемой в эВ. Электрон-вольт (эВ) – это внесистемная единица энергии, которую приобретает частица с элементарным электрическим зарядом при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 вольт

    1эВ=1,6 х 10-19 Дж = 1,6 х 10-12 эрг.

    1кэВ (килоэлектрон-вольт) = 103 эВ.

    1МэВ (мегаэлектрон-вольт) = 106 эВ.

    Зная энергию частиц, можно подсчитать, сколько пар ионов они способны образовать на пути пробега. Длина пути – полная длина траектории частицы (какой бы сложной она не была бы). Так, если частица обладает энергией в 600 кэВ, то она может образовать в воздухе около 20000 пар ионов.

    В тех случаях, когда энергии частицы (фотона) недостаточно для того, чтобы электрон преодолел притяжение атомного ядра и вылетел за пределы атома, (энергия излучений меньше потенциала ионизации) ионизация не происходит. Электрон, приобретя излишек энергии (так называемый возбужденный), на доли секунды переходит на более высокий энергетический уровень, а затем скачком возвращается на прежнее место и отдает излишнюю энергию в виде кванта свечения (ультрафиолетового или видимого). Переход электронов с внешних орбит на внутренние сопровождается рентгеновским излучением.

    Однако, роль возбуждения в воздействии радиации второстепенная в сравнении с ионизацией атомов, поэтому общепринято название радиации высоких энергий: «ионизирующая», что подчеркивает ее главное свойство.

    Второе название радиации – «проникающая» – характеризует способность излучений высокой энергии, прежде всего, рентгеновских и -лучей, проникать в глубину вещества, в частности, в тело человека. Глубина проникновения ионизирующего излучения зависит, с одной стороны, от природы излучения, заряда составляющих его частиц и энергии, а с другой – состава и плотности облучаемого вещества.

    Ионизирующие излучения обладают определенной скоростью и энергией. Так, -излучение и -излучение распространяются со скоростью, близкой к скорости света. Энергия, например, -частиц колеблется в пределах 4-9 МэВ.

    Одной из важных особенностей биологического воздействия ионизирующей радиации является невидимость, неощутимость. В этом и заключается их опасность, человек ни визуально, ни органолептически не может обнаружить воздействие излучений. В отличие от лучей оптического диапазона и даже радиоволн, которые вызывают в определенных дозах нагревание тканей и ощущение тепла, ионизирующие излучения даже в смертельных дозах нашими органами чувств не фиксируется. Правда, у космонавтов наблюдались косвенные проявления действия ионизирующей радиации – ощущение вспышек при закрытых глазах – за счет массивной ионизации в сетчатке глаза. Таким образом, ионизация и возбуждение – основные процессы, в которых тратится энергия излучений, поглощаемая в облучаемом объекте.

    Возникшие ионы исчезают в процессе рекомбинации, это значит воссоединения положительных и отрицательных ионов, в котором образуются нейтральные атомы. Как правило, процесс сопровождается образованием возбуждаемых атомов.

    Реакции с участием ионов и возбужденных атомов имеют чрезвычайно важное значение. Они лежат в основе многих химических процессов, в том числе и биологически важных. С ходом этих реакций связываются отрицательные результаты воздействия радиации на организм человека.
    2.2. Характеристика отдельных видов излучений

    Корпускулярные излучения - ионизирующие излучения, состоящие из частиц с массой, отличной от нуля.

    Альфа-излучение – поток положительно заряженных частиц (ядер атомов гелия - 24Не), которые движется со скоростью около 20000км/с. Альфа-лучи образуются при радиоактивном распаде ядер элементов с большими порядковыми номерами и при ядерных реакциях, превращениях. Энергия их колеблется в пределах 4-9 (2-11) МэВ. Пробег -частиц в веществе зависит от их энергии и от природы вещества, в котором они движутся. В среднем в воздухе пробег составляет 2-10см, в биологической ткани – несколько микрон. Так как -частицы массивны и обладают относительно большой энергией, путь их в веществе прямолинейный, они вызывают сильно выраженный эффект ионизации. Удельная ионизация составляет примерно 40000 пар ионов на 1 см пробега в воздухе (на всей длине пробега может создаваться до 250 тысяч пар ионов). В биологической ткани на пути в 1-2 микрона также создается до 40000 пар ионов. Вся энергия передается клеткам организма, нанося ему огромный вред.

    Альфа-частицы задерживаются листом бумаги и практически не могут проникать через внешний (наружный) слой кожи, они поглощаются роговым слоем кожи. Поэтому -излучение не представляет опасности до той поры, пока радиоактивные вещества, излучающие -частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом – тогда они становятся чрезвычайно опасными.

    Бета-излучение - поток -частиц, состоящий из электронов (отрицательно заряженных частиц) и позитронов (положительно заряженных частиц), испускаемых атомными ядрами при их -распаде. Масса β-частиц в абсолютном выражении равна 9,1х10-28 г. Бета-частицы несут один элементарный электрический заряд и распространяются в среде со скоростью от 100 тыс. км/с до 300 тыс. км/с (т.е. до скорости света) в зависимости от энергии излучения. Энергия -частиц колеблется в значительных пределах. Это объясняется тем, что при каждом -распаде радиоактивных ядер образующаяся энергия распределяется между дочерним ядром, -частицами и нейтрино в разных соотношениях, причем энергия  -частиц может колебаться от нуля до какого-то максимального значения. Максимальная энергия лежит в пределах от 0,015 – 0,05 МэВ (мягкое излучение) до 3 – 13,5 МэВ (жесткое излучение).

    Так как -частицы имеют заряд, то под действием электрического и магнитного полей они отклоняются от прямолинейного направления. Обладая очень малой массой, -частицы при столкновении с атомами и молекулами также легко отклоняются от своего первоначального направления (т.е. происходит сильное рассеяние их). Поэтому определить длину пути бета-частиц очень трудно – этот путь слишком извилистый. Пробег -частиц в связи с тем, что они обладают различным запасом энергии также подвергается колебаниям. Длина пробега в воздухе может достигать 25 см, а иногда и нескольких метров. В биологических тканях пробег частиц составляет до 1 см. На путь пробега влияет также плотность среды.

    Ионизирующая способность бета-частиц значительно ниже, чем альфа-частиц. Степень ионизации зависит от скорости: меньше скорость – больше ионизация. На 1 см пути пробега в воздухе -частица образует 50-100 пар ионов (1000-25 тыс. пар ионов на всем пути в воздухе ). Бета-частицы больших энергий, пролетая мимо ядра слишком быстро, не успевают вызвать такой же сильный ионизирующий эффект, как медленные бета-частицы. При потере энергии электрон захватывается либо положительным ионом с образованием нейтрального атома, либо атомом с образованием отрицательного иона.

    Нейтронное излучение - излучение, состоящее из нейтронов, т.е. нейтральных частиц. Нейтроны образуются при ядерных реакциях (цепной реакции деления ядер тяжелых радиоактивных элементов, при реакциях синтеза более тяжелых элементов из ядер водорода). Нейтронное излучение является косвенно ионизируемым; образование ионов происходит не под действием самих нейтронов, а под действием вторичных тяжелых заряженных частиц и гамма-квантов, которым нейтроны передают свою энергию. Нейтронное излучение чрезвычайно опасно вследствие своей высокой проникающей способности (пробег в воздухе может достигать несколько тысяч метров). Кроме того нейтроны могут вызвать наведенную радиоактивность (в том числе и в живых организмах), превращая атомы стабильных элементов в их радиоактивные изотопы. От нейтронного облучения хорошо защищают водородсодержащие материалы (графит, парафин, вода и т.д.)

    В зависимости от энергии различают следующие нейтроны:

    1. Сверхбыстрые нейтроны с энергией в 10-50 МэВ. Они образуются при ядерных взрывах и работе ядерных реакторов.

    2. Быстрые нейтроны, энергия их превышает 100 кэВ.

    3. Промежуточные нейтроны – энергия их от 100 кэВ до 1 кэВ.

    4. Медленные и тепловые нейтроны. Энергия медленных нейтронов не превышает 1 кэВ. Энергия тепловых нейтронов достигает 0,025 эВ.

    Нейтронное излучение используют для нейтронной терапии в медицине, определения содержания отдельных элементов и их изотопов в биологических средах и т.д. В медицинской радиологии используются главным образом быстрые и тепловые нейтроны, в основном используют калифорний-252, распадающийся с выбросом нейтронов со средней энергией в 2,3 МэВ.

    Электромагнитные излучения различаются по своему происхождению, энергии, а также по длине волны. К электромагнитным излучениям относятся рентгеновское излучение, гамма-излучение радиоактивных элементов и тормозное излучение, возникающее при прохождении через вещество сильно ускоренных заряженных частиц. Видимый свет и радиоволны – тоже электромагнитные излучения, но они не ионизируют вещество, ибо характеризуются большой длинной волны (меньшей жесткостью). Энергия электромагнитного поля излучается не непрерывно, а отдельными порциями – квантами (фотонами). Поэтому электромагнитные излучения – это поток квантов или фотонов.

    Рентгеновские излучения. Рентгеновские лучи были открыты Вильгельмом Конрадом Рентгеном в 1895г. Рентгеновское излучение – это квантовое электромагнитное излучение с длинной волны 0,001-10нм. Излучение с длинной волны, превышающей 0,2 нм условно называют «мягким» рентгеновским излучением, а до 0,2 нм – «жестким». Длина волны – расстояние, на которое излучение распространяется за один период колебания. Рентгеновское излучение, как и всякое электромагнитное излучение, распространяется со скоростью света – 300000 км/с. Энергия рентгеновского излучения обычно не превышает 500 кэВ.

    Различают тормозное и характеристическое рентгеновское излучение. Тормозное излучение возникает при торможении быстрых электронов в электростатическом поле ядра атомов (т.е. при взаимодействие электронов с ядрами атомов). При прохождении электрона больших энергий вблизи ядра наблюдается рассеяние (торможение) электрона. Скорость электрона снижается и часть его энергии испускается в виде фотона тормозного рентгеновского излучения.

    Характеристические рентгеновские излучения возникают когда быстрые электроны проникают вглубь атома и выбивают электрон из внутренних уровней (К, L и даже М). Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних уровней заполняют освободившиеся места во внутренних уровнях и при этом излучаются фотоны характеристического излучения с энергией, равной разности энергии атома в возбужденном и основном состоянии (не превышающем 250 кэВ). Т.е. характеристическое излучение возникает при перестроении электронных оболочек атомов. При различных переходах атомов из возбужденного состояния в невозбужденное, избыток энергии может также испускаться в виде видимого света, инфракрасных и ультрафиолетовых лучей. Так как рентгеновские лучи обладают малой длиной волн и меньше поглощаются в веществе, то они обладают большей проникающей способностью.

    Гамма-излучение - это излучение ядерного происхождения. Оно испускается ядрами атомов при альфа и бета распаде природных искусственных радионуклидов в тех случаях, когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета-частицей). Этот избыток энергии мгновенно высвечивается в виде гамма-квантов. Т.е. гамма-излучения – это поток электромагнитных волн (квантов), который излучается в процессе радиоактивного распада при изменении энергетического состояния ядер. Кроме того, гамма-кванты образуются при антигиляции позитрона и электрона. По свойствам гамма-излучение близко к рентгеновскому излучению, но обладает большей скоростью и энергией. Скорость распространения в вакууме равняется скорости света – 300000км/с. Так как гамма-лучи не имеют заряда, то в электрическом и магнитном полях не отклоняются, распространяясь прямолинейно и равномерно во все стороны от источника. Энергия гамма-излучения колеблется от десятков тысяч до миллионов электрон-вольт (2-3 МэВ), редко достигает 5-6 МэВ (так средняя энергия гамма-лучей, образующихся при распаде кобальта-60 равна 1,25 МэВ). В состав потока гамма-излучений входят кванты различных энергий. При распаде 131İ высвечивается пять групп квантов с различными энергиями, 82Вr излучает 11 групп гамма-квантов. Примером моноэнергетического гамма-излучения служит 137Сs, при его распаде высвечивается один квант с энергией в 0,661 МэВ. Путь пробега гамма-лучей в воздухе превышает 100 м, т.е. они обладают большой проникающей способностью и свободно проходят через тело человека. Чтобы снизить в 2 раза гамма-излучение радиоактивного кобальта – 2760Со (наиболее часто используемого в медицине для лучевой терапии) нужно взять слой свинца в 1,6 см или слой бетона в 10 см. Ионизирующая способность гамма-излучения значительно меньше, чем у альфа- и бета-частиц.
    2.3. Взаимодействие радиоактивных излучений с веществом

    Все виды ядерных излучений могут быть обнаружены только по их взаимодействию с веществом. При прохождении через вещество радиоактивные излучения взаимодействуют с атомами среды, т.е. с электронами и ядрами. Обнаружение и регистрация излучений, выбор материала для защиты, оценка биологического действия излучений основаны на эффектах, которые возникают при взаимодействии излучений с веществом. Механизм прохождения через вещество каждого вида излучений разный.

    Взаимодействие рентгеновских и γ-излучений осуществляется тремя основными механизмами (способами) : при помощи фотоэлектрического поглощения (фотоэффекта), комптоновского рассеяния (комптон-эффекта), образования электронно-позитронных пар.

    Фотоэффект. При фотоэлектрическом эффекте энергия падающего кванта полностью поглощается веществом, в результате чего появляется свободный электрон, обладающий определенной кинетической энергией, величина которой равна энергии кванта излучения за вычетом работы выхода данного электрона из атома (электрон покидает границы атома). Вероятность фотоэффекта увеличивается с ростом энергии связи электронов в атоме. Обычно выбивается электрон из К-слоя (в 80% случаев). Свободный электрон, ассоциируясь с одним из нейтральных атомов, порождает отрицательный ион. Атом, потерявший электрон, становится возбужденным. «Вакантное» место К-электрона (выбитого из атома) заполняется электроном из L-слоя, на L-слой переходит электрон из М-слоя и т.д. При этом высвечивается один или несколько квантов характеристического рентгеновского излучения. Характеристическое излучение – фотонное излучение, возникающее при изменении энергетического состояния электронов атома. Энергия рентгеновских квантов, образовавшихся при фотоэффекте достигает 0,1 МэВ (т.к. достаточно большая энергия). Однако энергия, излучаемая легкими атомами вторичных фотонов малая и такие фотоны сразу же поглощаются веществом.

    Фотоэффект характерен только для длинноволнового рентгеновского излучения. Фотоэлектрическое поглощение преобладает тогда, когда энергия гамма-кванта не превышает 0,05 МэВ. Фотоэффект идет интенсивней в более тяжелых ядрах (железо, медь, свинец и т.д.). Фотоэффект невозможен на слабосвязанных и свободных электронах (не связанных с атомами), так как они не могут поглощать гамма-кванты. В воздухе, воде и биологических тканях фотоэлектрическое поглощение составляет 50% при энергии гамма-квантов порядка 60 кэВ. Таким образом, фотоэффект является главным процессом поглощения при относительно малых энергиях ионизирующих излучений, когда часть энергии первичных фотонов превращается в кинетическую энергию электронов, часть в энергию характеристического излучения.

    Эффект Комптона. Для излучений с энергией, значительно превышающей внутриатомные энергии связи (> 1 МэВ) главную роль в ионизации приобретает эффект Комптона (обычно от 200 кэВ до 2 МэВ). При комптон-эффекте происходит упругое рассеяние падающих фотонов излучения на электронах внешних слоев атомов облучаемого вещества, которые можно считать не связанными (свободными), так как чем дальше удален электронный слой от ядра, тем меньше энергия связи ее электронов с ядром. Гамма-квант, сталкиваясь с электронами, передает им не всю свою энергию, а только часть ее и после соударения изменяет свое направление, т.е. рассеивается. Вследствие соударения с гамма-квантами электроны (электроны отдачи) приобретают значительную кинетическую энергию и расходуют ее на ионизацию вещества (вторичную ионизацию). Оставшуюся часть энергии выносит новый фотон (вторичный, который образовался в результате взаимодействия первичного фотона с веществом). Вторичные фотоны имеют меньшую энергию, большую длину волны и другое направление. В дальнейшем вторичный фотон может вновь претерпевать комптон-эффект и т.д. Комптоновское рассеяние возможно на свободных электронах.

    Энергия электронов отдачи, образующихся при эффекте Комптона, изменяется в широких пределах (от нуля до некоторого максимального значения). Средняя их энергия возрастает с увеличением энергии падающего излучения.

    Образование электронно-позитронных пар. Третий вид взаимодействия излучений с веществом - превращение гамма-кванта больших энергий (свыше 1 МэВ) в пару заряженных частиц – эффект образования пары элекрон-позитрон. Гамма-кванты, проходя через вещество, превращаются под действием сильного электрического поля вблизи ядра атома в пару частица-античастица: «электрон-позитрон». При этом одна форма материи – гамма излучение преобразуется в другую – в частицы вещества. Вероятность образования пары «электрон-позитрон» для тяжелых элементов больше, чем для легких.

    Образовавшаяся электронно-позитронная пара в дальнейшем исчезает (аннигилирует), превращаясь в два вторичных гамма-кванта с энергией, равной энергетическому эквиваленту массы покоя частиц позитрона и электрона (0,511 МэВ). Вторичные гамма-кванты способны вызвать лишь комптон-эффект и в конечном счете фотоэффект, т.е. терять энергию только при соударении с электронами. Процесс образования пар увеличивается с возрастанием энергии гамма-квантов и плотности поглотителя.

    Таким образом, в зависимости от энергии падающего электромагнитного излучения преобладает тот или иной вид его взаимодействия с веществом. В большинстве случаев при облучении биологических объектов энергия используемого электромагнитного излучения находится в диапазоне 0,2 - 2 МэВ, поэтому наиболее вероятен эффект Комптона.

    В результате каждого из трех процессов взаимодействия излучения с веществом в облученной среде возникает большое количество быстро движущихся электронов. Значительная часть их обладает энергией, достаточной для ионизации вещества.

    Электромагнитные излучения ионизацию непосредственно не вызывают, но при взаимодействии с веществом образуют фотон и комптоновские электроны, которые в свою очередь ионизируют среду – поэтому их называют косвенно ионизирующим излучением.

    Взаимодействие заряженных частиц с веществом. Механизм передачи энергии заряженными частицами облучаемому веществу один и тот же. При прохождении через вещество заряженная частица теряет свою энергию, вызывая ионизацию и возбуждение атомов до тех пор, пока общий запас энергии уменьшается настолько, что частица утратит ионизирующую способность.

    В зависимости от знака заряда при пробеге частицы в веществе она, испытывая электростатическое взаимодействие, притягивается или отталкивается от положительно заряженных ядер. Чем больше масса летящей частицы, тем меньше она отклоняется от первоначального направления. Поэтому траектория протонов и более тяжелых ядерных частиц практически прямолинейна, а траектория электронов сильно изломана вследствие рассеяния (отклонения) на орбитальных электронах и ядрах атомов. Этот вид взаимодействия легких частиц (электронов), при котором практически меняется лишь направление их движения, а не энергия, называют упругим рассеянием. При этом взаимодействии электрон передает лишь небольшую часть своей энергии ядру и меняется первоначальное направление движения. При прохождении электрона очень высокой энергии вблизи ядра наблюдается неупругое рассеяние (торможение). При этом скорость летящего электрона снижается и часть его энергии испускается в виде фотона тормозного излучения. Тормозное излучение – это фотонное излучение, возникающее при уменьшении кинетической энергии заряженной частицы. При неупругом рассеянии наблюдается также взаимодействие частиц с электронами облучаемого вещества, вызывающее ионизацию или возбуждение атомов.

    Траектория электрона в веществе имеет сложный вид, связанный с характером взаимодействия. На начальном участке траектория электрона рассеивается на небольшие углы и траектория его мало отличается от прямой линии. С уменьшением энергии электрона (а она колеблется от 20 кэВ до 13,5 МэВ) угол рассеяния увеличивается и электрон начинает двигаться по извилистой кривой.

    Таким образом, основными результатами взаимодействия электронов высокой энергии с веществом являются следующие:

    1. При неупругих столкновениях энергия затрачивается на ионизацию и возбуждение атомов среды, частично на преобразование в тормозное излучение.

    2. При упругих столкновениях энергия преобразуется непосредственно в тепловое движение.

    3. В легких веществах (Z≤ 13) тормозное излучение становится заметным при энергиях электрона больших чем 10 МэВ. При меньших энергиях преобладают потери энергии на ионизацию.

    4. Первичные электроны создают положительные ионы и вторичные электроны, последние могут обладать энергией, достаточной для ионизации. На долю вторичных ионизаций приходится до 70% общей ионизации. При замедлении вторичные электроны могут создавать отрицательные ионы.

    5. Траектория электронов при больших энергиях близкая к линейной. При уменьшении энергии электрон из-за рассеяния начинает двигаться по извилистой кривой.

    6. Глубина проникновения электронов в веществе прямо пропорциональна их энергии и обратно пропорциональна плотности вещества.



    Тяжелые заряженные частицы - протоны, дейтроны, альфа-частицы, осколки деления, аналогично электронам, затрачивают большую часть своей энергии на ионизацию, возбуждение атомов, а также на взаимодействие с кулоновским полем ядра и электронов (тормозное излучение). В значительной степени эти процессы вызваны электронами, которые образовались в процессе первичной ионизации.

    Отличительной чертой тяжелых частиц, в сравнении с быстрыми электронами той же энергии, является их более медленное движение из-за большой массы. При энергии в несколько МэВ ионизационные потери для альфа-частиц в 1000 раз большие, чем для электронов. В результате этого путь электронов в веществе (глубина проникновения) значительно больше, чем путь альфа-частиц.

    Как известно, величина энергии, которая излучается какой-либо частицей, прямо пропорциональна квадрату ее ускорения и обратно пропорциональна массе частицы. Из этого вытекает, что радиационные потери тяжелых заряженных частиц (т.е. потери на тормозное излучение) небольшие.

    Столкновение тяжелой частицы с легким электроном не может вызвать значительного отклонения ее от первоначального направления движения, поэтому их путь в веществе прямолинейный.

    Тяжелые частицы, как и электроны, передают энергию порциями. Максимальная энергия вторичных электронов определяется энергией падающих частиц. Так, при столкновении альфа-частицы энергией в 5 МэВ с электроном, последний приобретает энергию около 2700 эВ. Этой энергии достаточно для осуществления вторичной ионизации (ведь потенциал ионизации в воздухе равен 34 эВ).

    Основными результатами взаимодействия тяжелых заряженных частиц с веществом являются следующие:

    1. Прохождение тяжелых заряженных частиц через вещество сопровождается образованием ионов, возбуждением атомов.

    2. Ионизационные потери намного большие, чем при облучении электронами, соответственно пробег тяжелых частиц в веществе намного меньше пробега электронов.

    3. Траектория движения из-за большой массы частицы мало отличается от линейной. Скорость тяжелых заряженных частиц существенно меньше скорости движения электронов.

    4. Потери энергии частиц на тормозное излучение незначительно.

    5. Максимальная энергия передается веществу вблизи конца пробега частицы.


    Взаимодействие атомов деления с веществом. Осколки деления представляют собой многозарядные (заряд достигает 20) ионы с массовым числом 72-166, которые возникают при делении ядер тяжелых изотопов: 235U, 238U, 239Рu.

    В процессе деления возникает около 80 первичных продуктов деления, из них только шесть стабильные. Массовые числа осколков легких изотопов находятся в области А=72-116, (Br, Kr, Zn, Y, Mo, Ru), тяжелых изотопов – в области А=117-166 (Te, J, Xe, Cs, Ba, La, Ce, Pr, Nd, Sb).

    Энергия осколков составляет от 40 до 120 МэВ. Эта энергия в основном затрагивается на ионизацию и возбуждение атомов и молекул. Важную роль играют также столкновения осколков с ядрами.

    Отличительной чертой процесса замедления осколков в веществе – постепенное уменьшение заряда по всей длине пробега. В противоположность ионизационному эффекту, вызываемому альфа-частицами, плотность ионизации понижается к концу трека. С уменьшением заряда уменьшаются потери на ионизацию и возбуждение и увеличиваются потери на упругое столкновение с ядрами.

    Взаимодействие нейтронов с веществом. Характер взаимодействия нейтронов с веществом зависит от их энергии. В отличие от заряженных частиц нейтроны не несут электрического заряда, что позволяет им беспрепятственно проникать в глубь атомов. Сверхбыстрые нейтроны с энергией в 10-50 МэВ при взаимодействии с тяжелыми элементами вызывают деление их ядер (ядро делится на 2-3 осколка). При этом высвобождается колоссальная энергия (около 200 МэВ) и вылетают 2-3 свободных нейтрона, которые способны вызвать деление других ядер. Так возникает цепной процесс деления ядер. Наибольшее значение имеют быстрые нейтроны. Достигая ядер, они либо поглощаются ими, либо рассеиваются на них. Т.е. основным видом взаимодействия нейтронов с веществом является взаимодействие с атомными ядрами. В этих взаимодействиях нейтроны могут претерпевать упругое и неупругое рассеивание, порождать заряженные частицы и гамма-кванты, вызывать деление некоторых ядер и т.д. Достигая ядер вещества, быстрые нейтроны тратят энергию крупными порциями, расходуя ее на возбуждение ядер или их расщепление. В результате одного или нескольких столкновений с ядрами энергия нейтрона становится меньше минимальной энергии возбуждения (от десятков кэВ до нескольких МэВ). После этого рассеяние нейтрона ядром становится упругим. При упругом рассеивании нейтрон передает часть своей энергии ядру, с которым он столкнулся. При этом он замедляется и изменяет направление движения. После ряда столкновений замедленный нейтрон захватывается ядром. При упругом рассеянии на ядрах углерода, азота, кислорода и других элементов, нейтрон теряет лишь 10-15% энергии, а при столкновении с почти равными с ним по массе ядрами водорода – протонами, энергия нейтронов уменьшается в среднем вдвое, передаваясь протону отдачи (при этом образуется нейтрон с меньшей энергией). Поэтому вещества, содержащие большое количество атомов водорода (вода, бериллий, графит, парафин) используются для защиты от нейтронного излучения: в них нейтроны быстро растрачивают свою энергию и замедляются. В результате упругого рассеяния нейтронов образуются сильноионизирующие протоны.

    Ядро, захватившее нейтрон, становится возбужденным. Переход из возбужденного в основное состояние возможно разными путями: ядро может излучить нейтрон меньшей энергии и один или несколько гамма-квантов, заряд ядра не меняется; в процессе распада могут образовываться ядра меньшего или большего заряда и излучаться заряженные частицы – электрон, позитрон, альфа-частица, протон и др.; захват нейтрона может сопровождаться делением некоторых ядер. Образовавшиеся гамма-кванты и частицы также способны производить ионизацию. При таких ядерных реакциях могут образовываться радиоактивные изотопы элементов и возникать наведенная радиоактивность, в свою очередь тоже вызывающая ионизацию. Ионизируют вещество, наконец, и сами ядра отдачи, возникающие при ядерных превращениях.

    Медленные нейтроны сразу захватываются ядрами атомов, в результате чего образуются новые стабильные или радиоактивные изотопы. В водородосодержащих веществах ядра водорода захватывают медленные нейтроны и превращаются в ядра тяжелого водорода – дейтерия. Захват нейтронов сопровождается испусканием гамма-квантов с энергией в 2,18 МэВ

    11Н + 01n 12He+ γ-изл.

    Таким образом, и при нейтронном облучении конечный биологический эффект связан с ионизацией, проиводимой опосредованно вторичными частицами или фотонами.


    1   2   3   4   5   6   7   8   9   ...   15


    написать администратору сайта