Главная страница
Навигация по странице:

  • РАДИАЦИОННой БЕЗОПАСНОСТи (компьютерный вариант) ВИТЕБСК-2005 Лекция № 1

  • Строение атома Атом является основным стррруктурным элементом всех веществ. Атом

  • 1.2. Строение атомного ядра

  • 1.3. Стабильные и радиоактивные изотопы

  • 1.4. Понятие о радиоактивности

  • 1.5. Типы ядерных превращений

  • 2. Бета-распад.

  • . Протонная радиоактивность

  • 1.6. Ядерные и термоядерные реакции Ядерные реакции

  • 1.7. Период полураспада радионуклидов. Закон радиоактивного распада

  • Лекции по РБ. Лекция 1 основные представления о радиоактивности строение атома


    Скачать 0.82 Mb.
    НазваниеЛекция 1 основные представления о радиоактивности строение атома
    АнкорЛекции по РБ.doc
    Дата16.01.2018
    Размер0.82 Mb.
    Формат файлаdoc
    Имя файлаЛекции по РБ.doc
    ТипЛекция
    #14143
    страница1 из 15
      1   2   3   4   5   6   7   8   9   ...   15

    Министерство образования Республики Беларусь

    УО «Витебский государственный университет

    им. П.М. Машерова»

    А.Ф.Хлопцев

    лекции

    по

    РАДИАЦИОННой БЕЗОПАСНОСТи

    (компьютерный вариант)

    ВИТЕБСК-2005

    Лекция № 1

    ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ О РАДИОАКТИВНОСТИ





      1. Строение атома

    Атом является основным стррруктурным элементом всех веществ.

    Атом – частица вещества, наименьшая частица химического


    элемента, являющаяся носителем его химических свойств. Химические свойства элемента определяются строением его атома. Атомы различных веществ неодинаковы по своему строению. Так, атом водорода отличается от атома железа, а атом железа от атома урана.

    Химический элемент – это определенный вид атомов с одинаковым положительным зарядом ядра. Так, например, все атомы кислорода, независимо от того, входят они в состав молекул кислорода или в состав молекул воды – это химический элемент кислород. В настоящее время известно 108 элементов. Из них 90 существуют в природе, а около 70 содержатся в организме человека. Для обозначения химических элементов введены химические знаки или химические символы. Их обозначают начальной или начальной и одной из последующих букв латинского названия данного элемента (кислород, Oxygenium- О; натрий , Natrium – Na; цинк, Zincum – Zn и т. д.). Каждый элемент занимает в периодической таблице Д.И. Менделеева (ПСМ) определенное место, т.е. имеет порядковый номер.

    Определенные атомы объединяются один с одним и образуют новые частицы – молекулы. Молекула – это наименьшая частица вещества, которая сохраняет его состав и химические свойства. В зависимости от того, состоят ли молекулы из атомов одного и того же элемента, или же из атомов различных элементов, все вещества делятся на простые и сложные.

    Молекулы простых веществ состоят из одного атома (He – гелий, Ne – неон, Kr – криптон), двух (О2 – кислород, N2 – азот, Cl2 – хлор) и более атомов (S8 – сера). Один и тот же элемент может образовывать несколько простых веществ (так, алмаз и графит отличаются только размещением одних и тех же атомов углерода в молекуле). Возможно и различное число атомов одного и того же элемента в молекуле (О2 – кислород, О3 – азон). Вещества, молекулы которых состояли из атомов двух и более элементов, образуют сложные вещества (Н2О, СО2, Н2SO4, СН3СН2ОН). Каждому элементу соответствует определенный род атома. Размеры атома чрезвычайно малые. Его диаметр составляет 10-8 см, на отрезке в 1 см можно уложить 100 млн. атомов. Масса самого простого и легкого атома – водорода (11Н) составляет 1,67x10-27кг. Атом урана (92238U), самый тяжелый из существующих на Земле элементов , занимающий в таблице Д.И. Менделеева 92 место, тяжелее атома водорода в 238 раз. Известны сверхтяжелые элементы, получаемые искусственным путем. Так атом плутония (94244Pu) в 244 раза тяжелее атома водорода.


    Все атомы химических элементов имеют одинаковую структуру. Они состоят из положительно заряженного ядра, где сконцентрирована практически вся масса атома (99,95%) и отрицательно заряженных электронов, образующих электронные оболочки вокруг ядра. В целом атом электрически нейтрален.

    Модель строения атома предложил еще в 1911 г. английский физик Эрнст Резерфорд (это так называемая планетарная или ядерная модель). Атом, по Резерфорду, это своеобразная модель Солнечной системы – в центре находится тяжелое положительно заряженное ядро, вокруг которого подобно планетам вокруг Солнца, вращаются отрицательно заряженные электроны. Датский ученый Нильс Бор усовершенствовал планетарную модель атома. Он высказал суждение, что электроны движутся не по любым орбитам, а по определенным. При этом, согласно Бору, электронные орбиты могут быть сгруппированы в отдельные электронные оболочки.

    По современным данным электрон в атоме не имеет траектории. Различные положения его рассматриваются как электронное облако с определенной плотностью отрицательного заряда. Максимальная плотность отвечает наибольшей вероятности нахождения электрона в данной части атомного пространства. Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью (вместо существовавшего ранее термина орбита).

    Орбитали атома имеют разные размеры. Электроны, которые движутся в орбиталях близкого размера, образуют электронные слои. Электронные слои называют также энергетическими уровнями. Энергетические уровни нумеруют, начиная от ядра цифрами - 1, 2, 3, 4, 5, 6, 7 или обозначают буквами – K, L, M, N, O, P, Q. Наибольшее число электронов на энергетическом уровне равно удвоенному квадрату номера уровня - N = 2n 2. Целое число n, обозначающее номер уровня, называется главным квантовым числом. В соответствии с этим уравнением на 1-м, ближайшим к ядру энергетическом уровне, может находиться не более 2-х электронов, на 2-м уровне - не более 8, на 3-м уровне – не более 18, на 4-м уровне – не более 32 электронов и т. д.

    Энергетические уровни подразделяются на подуровни, число подуровней равно значению главного квантового числа, но не превышает 4-х подуровней. Подуровни обозначают латинскими буквами – s, p, d, f.

    Между ядром и электронами существуют силы притяжения. Наиболее прочная связь электронов с ядром наблюдается у электронов на К-уровне, так углерода энергия связи электронов составляет 280 эВ, стронция – 16 кэВ, цезия – 36 кэВ, урана – 280 кэВ. Чем на более удаленном от ядра энергетическом уровне находится электрон, тем меньше энергия связи его с ядром. На внешних энергетических уровнях энергия связи электронов не превышает 1-2 эВ. Поэтому электроны внешних энергетических уровней более подвержены воздействию излучений низкой энергии.
    1.2. Строение атомного ядра

    Как уже отмечалось, атом состоит из трех видов элементарных частиц: протонов, нейтронов и электронов. Атомное ядро – центральная часть атома, состоящая из протонов и нейтронов. Протоны и нейтроны имеют общее название нуклон, в ядре они могут превращаться друг в друга. Ядро простейшего атома – атома водорода – состоит из одной элементарной частицы – протона.

    Диаметр ядра атома равен примерно 10-13 – 10-12 см и составляет 0,0001 диаметра атома. Однако, практически вся масса атома (99,95 – 99,98 %) сосредоточена в ядре. Если бы удалось получить 1 см3 чистого ядерного вещества, масса его составила бы 100 – 200 млн.т. Масса ядра атома в несколько тысяч раз превосходит массу всех входящих в состав атома электронов.

    Протон – элементарная частица, ядро атома водорода. Масса протона равна 1,6721х10-27 кг, она в 1836 раз больше массы электрона. Электрический заряд положителен и равен 1,66х10-19 Кл. Кулон – единица электрического заряда, равная количеству электричества, проходящему через поперечное сечение проводника за время 1с при неизменной силе тока 1А (ампер).

    Каждый атом любого элемента содержит в ядре определенное число протонов. Это число постоянное для данного элемента и определяет его физические и химические свойства. То есть, от количества протонов зависит, с каким химическим элементом мы имеем дело. Например, если в ядре один протон – это водород, если 26 протонов – это железо. Число протонов в атомном ядре определяет заряд ядра (зарядовое число Z) и порядковый номер элемента в периодической системе элементов Д.И. Менделеева (атомный номер элемента).

    Нейтрон – электрически нейтральная частица с массой 1,6749 х10-27кг, в 1839 раз больше массы электрона. Нейрон в свободном состоянии – нестабильная частица, он самостоятельно превращается в протон с испусканием электрона и антинейтрино. Период полураспада нейтронов (время, в течение которого распадается половина первоначального количества нейтронов) равен примерно 12 мин. Однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Общее число нуклонов (протонов и нейтронов) в ядре называют массовым числом (атомной массой – А). Число нейтронов, входящих в состав ядра, равно разности между массовым и зарядовым числами: N = A – Z.

    Электрон – элементарная частица, носитель наименьшей массы – 0,91095х10-27г и наименьшего электрического заряда – 1,6021х10-19 Кл. Это отрицательно заряженная частица. Число электронов в атоме равно числу протонов в ядре, т.е. атом электрически нейтрален.

    Позитрон – элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Масса электрона и позитрона равны, а электрические заряды равны по абсолютной величине, но противоположны по знаку.

    Различные типы ядер называют нуклидами. Нуклид – вид атомов с данными числами протонов и нейтронов. В природе существуют атомы одного и того же элемента с разной атомной массой (массовым числом): 17 35 Cl, 1737Cl и т.д. Ядра этих атомов содержат одинаковое число протонов, но различное число нейтронов. Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядер, но различное массовое число, называются изотопами. Обладая одинаковым количеством протонов, но различаясь числом нейтронов, изотопы имеют одинаковое строение электронных оболочек, т.е. очень близкие химические свойства и занимают одно и то же место в периодической системе химических элементов.

    Изотопы обозначают символом соответствующего химического элемента с расположенным сверху слева индексом А – массовым числом, иногда слева внизу приводится также число протонов (Z). Например, радиоактивные изотопы фосфора обозначают 32Р, 33Р или 1532Р и 1533Р соответственно. При обозначении изотопа без указания символа элемента массовое число приводится после обозначения элемента, например, фосфор – 32, фосфор – 33.

    Большинство химических элементов имеет по несколько изотопов. Кроме изотопа водорода 1Н-протия, известен тяжелый водород 2Н-дейтерий и сверхтяжелый водород 3Н-тритий. У урана 11 изотопов, в природных соединениях их три (уран 238, уран 235, уран 233). У них по 92 протона и соответственно 146,143 и 141 нейтрон.

    В настоящее время известно более 1900 изотопов 108 химических элементов. Из них к естественным относятся все стабильные (их примерно 280) и естественные изотопы, входящие в состав радиоактивных семейств (их 46). Остальные относятся к искусственным, они получены искусственным путем в результате различных ядерных реакций.

    Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же элемента, например, изотопы углерода 12С и 14С. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды», например, радионуклиды 90Sr, 131J, 137Cs.
    1.3. Стабильные и радиоактивные изотопы

    Если ядра атомов состоят из протонов, то как объяснить устойчивость этих ядер? Ведь одноименно заряженные протоны согласно закону Кулона, отталкиваясь, друг от друга, должны были бы разлететься в разные стороны. Однако в действительности ядра атомов очень прочные образования. Следовательно, кроме Кулоновских сил отталкивания в ядре действуют и силы притяжения. Эти силы назвали ядерными силами. Они действуют между нуклонами, т.е. между протоном и протоном, протоном и нейтроном, нейтроном и нейтроном. Они значительны только на малых расстояниях, сравнимых с поперечником самих ядерных частиц (10-13см). С увеличением расстояния между ядерными частицами ядерные силы быстро уменьшаются и становятся практически равными нулю. Так, если на расстоянии 10-15м ядерные силы приблизительно в 100 раз превышают Кулоновские силы отталкивания, то уже на расстоянии 10 –14м они оказываются мизерными.

    Ядерные силы обладают свойством насыщения, т.е. каждый нуклон взаимодействует только с ограниченным числом соседних нуклонов. Поэтому при увеличении числа нуклонов в ядре ядерные силы значительно ослабевают. Этим объясняется меньшая устойчивость ядер тяжелых элементов, в которых содержится значительное количество протонов и нейтронов. Так как с увеличением атомного номера увеличение числа нейтронов преобладает, говорят о «разрыхляющем» действии нейтронов.

    Чтобы разделить ядро на составляющие его протоны и нейтроны и удалить их из поля действия ядерных сил, надо совершить работу, т.е. затратить энергию. Эта энергия называется энергией связи ядра. Энергия связи частиц в ядрах составляет несколько миллионов электрон-вольт (эВ). Например, энергия связи ядра гелия составляет 28 МэВ, дейтерия – 2,2 МэВ, азота – 104,5 МэВ, урана – 1800 МэВ. Средняя энергия связи, приходящаяся на один нуклон, называется удельной энергией связи, она равна 7 – 8,5 МэВ. Чтобы “взорвать” ядро, нужно приложить такую же энергию “извне”.

    В зависимости от того, какие силы в ядре превалируют, ядро является или стабильным или нестабильным. Наибольшую энергию связи, а следовательно и максимальную стабильность имеют ядра, располагающиеся в середине таблицы Д.И.Менделеева (в районе железа). Устойчивость ядра зависит от соотношения количества протонов и нейтронов в ядре. Количество протонов в ядре всегда равно или меньше количества нейтронов. Отношения массы атома к числу протонов должно быть равно или больше 2 (А/Z >,=2). Для легких элементов это отношение равно 2, для тяжелых – 2,6. Чем меньше в ядре нейтронов, тем ядро устойчивее. Если в ядре слишком много протонов или нейтронов, то такие ядра неустойчивы и претерпевают самопроизвольные радиоактивные превращения, в результате которых ядро атома одного элемента превращается в ядро атома другого элемента.

    Ядра с четным количеством протонов имеют большую стабильность изотонов и более распространены в природе, чем ядра с нечетным количеством протонов. Наиболее устойчивыми являются ядра с четным количеством протонов и четным количеством нейтронов (“четно-четные” ядра). Самыми устойчивыми являются ядра, содержащие по 2, 8, 20, 50, 82 протона и нейтрона (“дважды магические ядра”): 24Не – гелий, 816О – кислород, 2040Са – кальций.

    Наименее устойчивыми являются ядра с нечетным количеством протонов и нечетным количеством нейтронов («нечетно-нечетные» ядра).

    В начале и середине таблицы Д.И.Менделеева количество протонов и нейтронов в ядрах в основном равно: 2 4He, 612С, 816О, 1632S и поэтому ядра чаще стабильны. С увеличением атомного номера Z и увеличением количества нейтронов по сравнению с протонами все в большей степени проявляется их «разрыхляющее» действие и ядра становятся менее устойчивыми. У элементов с атомным номером от 84 до 92 ядерные силы уже не способны обеспечивать полную устойчивость ядер. Эти элементы оказываются нестабильными: Rn-222, Ra-226, U-238 и т.д.

    Стабильность понижается не только в сторону более тяжелых, но и в сторону более легких элементов: кислород 16, 17, 18 – стабильный, а кислород – 13, 14, 15, 19, 20 – не стабильный; кальций – 40, 42, 43, 44, 46, 48 – стабильный, а кальций – 37, 38, 39, 41, 45, 47, 49, 51 – не стабильный.

    Таким образом, низкой стабильностью отличаются ядра с недостаточным и излишним содержанием нейтронов.
    1.4. Понятие о радиоактивности

    В 1895г В.Рентген обнаружил лучи, которые возникали при пропускании тока высокого напряжения через стеклянный баллон с разреженным воздухом. Эти лучи обладали способностью вызывать почернение фотопластинки в светонепроницаемой упаковке. В 1896г А.Беккерель обнаружил, что соединения урана и некоторые его природные руды (соли урана) самопроизвольно излучают невидимые лучи, обладающие большой проникающей способностью и вызывающие почернение фотопластинки. В 1898г Мария Склодовская-Кюри и Пьер Кюри установили, что излучать лучи могут не только уран и его соединения, но и некоторые другие элементы: радий, торий, полоний. Явление самопроизвольного излучения было названо радиоактивностью, а вещества, излучающие лучи, радиоактивными. В дальнейшем было установлено, что эти излучения связаны с процессом самопроизвольного распада ядер атомов этих веществ. Оказалось, что радиоактивное излучение состоит из трех компонентов разной природы. В магнитном поле эти излучения делятся на три пучка:

    • лучи, заряженные отрицательно, -лучи – отклоняются в сторону севера;

    • лучи, заряженные положительно, -лучи – отклоняются в сторону юга;

    • лучи, не имеющие электрического заряда (нейтральные), -лучи – не отклоняются.

    Радиоактивность (по современным взглядам) – это свойство ядер определенных элементов самопроизвольно (т.е. без каких-либо внешних воздействий) превращаться в ядра других элементов с испусканием особого рода излучений, которые называют радиоактивными излучениями. Само явление называется радиоактивным распадом.

    Радиоактивные превращения, в отличие от химических реакций, происходят самопроизвольно и непрерывно, всегда сопровождаются выделением энергии. На их скорость не оказывает никакого влияния ни изменение температуры и давления, ни самый лучший химический катализатор, ни электрическое и магнитное поля, ни агрегатное состояние вещества. Их нельзя ни ускорить, ни замедлить.

    Радиоактивность, наблюдающаяся в ядрах, существующих в природных условиях, называют естественной радиоактивностью. Аналогичные процессы, происходящие в искусственно полученных веществах, называют искусственной радиоактивностью. Между – искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одним и тем же законам (закон сохранения энергии, электрических зарядов и др.). По закону сохранения количества нуклонов, число нуклонов при любом радиоактивном распаде сохраняется, причем нуклоны одного вида могут превращаться в нуклоны другого вида (нейтроны в протоны и наоборот).

    Изотопы, обладающие радиоактивностью, называют радиоактивными изотопами. Как уже отмечалось, ядра всех изотопов химических элементов называют нуклидами (т.е. радионуклиды – это радиоактивные атомы с данным массовым числом и атомным номером). Вещества, содержащие в своем составе радионуклиды, называются радиоактивными веществами. Элементы, состоящие только из радиоактивных изотопов, называются радиоактивными элементами (это элементы с Z – 43,61,84 – 108).
    1.5. Типы ядерных превращений

    В соответствии с видами радиоактивных излучений существуют несколько видов радиоактивного распада (типов радиоактивных превращений). Радиоактивному превращению подвергаются элементы, в ядрах которых слишком много протонов или нейтронов. Рассмотрим виды радиоактивного распада.

    1. Альфа-распад характерен для естественных радиоактивных элементов с большим порядковым номером (т.е. с малыми энергиями связи). Известно около 160 альфа-активных видов ядер, в основном порядковый номер их более 82 (Z > 82). Альфа-распад сопровождается испусканием из ядра неустойчивого элемента альфа-частицы, которая представляет собой ядро атома гелия Не (в его составе 2 протона и 2 нейтрона). Заряд ядра уменьшается на 2, массовое число – на 4.

    ZАХ → Z-2 А-4 У + 2 4Не; 92 238U →24 Не + 90 234Th;

    88 226Ra→2 4He + 86 222Rn + γ изл.

    Альфа – распад подвергается более 10% радиоактивных изотопов.

    2. Бета-распад. Ряд естественных и искусственных радиоактивных изотопов претерпевают распад с испусканием электронов или позитронов.

    а) Электронный бета-распад. характерен как для естественных, так и для искусственных радионуклидов, которые имеют излишек нейтронов (т.е. в основном для тяжелых радиоактивных изотопов). Электронному бета-распаду подвергается около 46% всех радиоактивных изотопов. При этом один из нейтронов превращается в протон, а ядро испускает электрон и антинейтрино. Заряд ядра и соответственно атомный номер элемента при этом увеличивается на единицу, а массовое число остается без изменения.
    АZ Х → АZ+1У + е- + v-; 24194Pu→24195Am+e-+v-; 6429Cu→6430Zn+e-+v-; 4019K→4020Ca+e-+v-

    При испускании β-частиц ядра атомов могут находиться в возбужденном состоянии, когда в дочернем ядре обнаруживается избыток энергии, которая не захвачена корпускулярными частицами. Этот излишек энергии высвечивается в виде гамма-квантов.

    13755Cs →13756 Ва+е-+v-+γ изл.
    б) Позитронный бета-распад. Наблюдается у некоторых искусственных радиоактивных изотопов, у которых в ядре имеется излишек протонов. Он характерен для 11% радиоактивных изотопов, находящихся в первой половине таблицы Д.И. Менделеева (Z<45). При позитронном бета-распаде один из протонов превращается в нейтрон, заряд ядра и соответственно атомный номер уменьшается на единицу, а массовое число остается без изменений. Ядро испускает позитрон и нейтрино.
    AZX→AZ-1У+е++v+; 3015P→3014Si+e++v+; 6429Cu 6428Ni+e++v+
    Позитрон, вылетев из ядра, срывает с оболочки атома «лишний» электрон или взаимодействует со свободным электроном, образуя пару «позитрон – электрон», которая мгновенно превращается в два гамма-кванта с энергией, эквивалентной массе частиц (е и е). Процесс превращения пары «позитрон – электрон» в два гамма-кванта получил название аннигиляции (уничтожения), а возникающее электромагнитное излучение – аннигиляционного. В данном случае происходит превращение одной формы материи (частиц вещества) в другую – гамма-фотоны.

    в) Электронный захват. Это такой вид радиоактивного превращения, когда ядро атома захватывает электрон из ближайшего к ядру энергетического К-уровня (электронный К-захват) или реже в 100 раз – из L уровня. В результате один из протонов ядра нейтрализуется электроном, превращаясь в нейтрон. Порядковый номер нового ядра становится на единицу меньше, а массовое число не изменяется. Ядро испускает антинейтрино. Освободившееся место, которое занимал в К или L – уровне захваченный электрон, заполняется электроном из более удаленных от ядра энергетических уровней. Избыток энергии, освободившийся при таком переходе, испускается атомом в виде характеристического рентгеновского излучения.

    AZХ + е-AZ-1 У + v- + рентгеновское излучение

    4019К + е-40 18Аr + v-+ рентгеновское излучение

    6429Сu + е-6428 Ni+v- + рентгеновское излучение

    Электронный К-захват характерен для 25% всех радиоактивных ядер, но в основном для искусственных радиоактивных изотопов, расположенных в другой половине таблицы Д.И.Менделеева и имеющих излишек протонов (Z = 45 – 105). Только три естественных элемента претерпевают К-захват: калий-40, лантан-139, лютеций-176 (4019K, 13957La, 17671Lu).

    Некоторые ядра могут распадаться двумя или тремя способами : путем альфа- и бета-распада и К-захвата.

    Калий–40 подвергается, как уже отмечалось, электронному распаду – 88%, и К-захвату – 12%. Медь–64 (6428 Сu) превращается в никель (позитронный распад – 19%, К-захват – 42%; электронный распад – 39%).

    3. Испускание γ-излучения не является видом радиоактивного распада (при этом не происходит превращение элементов), а представляет собой поток электромагнитных волн, возникающих при альфа- и бета –распаде ядер атомов (как естественных, так и искусственных радиоактивных изотопов), когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета- частицей). Этот избыток мгновенно высвечивается в виде гамма-квантов.
    13153I→13154Xe + e- +v- +2γ кванта; 22688Ra→42He + 22286Rn + γ квант.

    4. Протонная радиоактивность – испускание протона из ядра в основном состоянии. Этот процесс может наблюдаться у искусственно полученных ядер с большим дефицитом нейтронов

    лютеций-151 (15171Lu) – в нем на 24 нейтрона меньше, чем в стабильном изотопе 17571 Lu.
    1.6. Ядерные и термоядерные реакции

    Ядерные реакции – это превращение ядер атомов, вызванные воздействием на них элементарных частиц или других ядер. Так под действием нейтронов происходит самопроизвольное (спонтанное) деление ядер радиоактивных элементов с большими атомными массами (урана-235, тория-232, протактиния-231, плутония-239). Ядра урана-235 и плутония-239 делятся нейтронами любых энергий, но особенно хорошо медленными нейтронами. Ядра урана-238 делятся только быстрыми нейтронами (с энергиями, не меньшими 1 МэВ). Деление тяжелых ядер может быть вызвано и другими частицами – протонами, дейдронами, альфа-частицами. При делении ядер урана-235 образуются осколки деления, которые представляют собой ядра элементов со средними массовыми числами в соотношении 2:3, а также свободные нейтроны (2-3) и γ-излучение. При этом выделяется значительная энергия (= 200 МэВ). Всего образуется около 80 различных осколков, которые разлетаются со скоростью, равной скорости света.

    23592U + 10n→14055Cs + 9437Rb + 2 10n; 23592U + 10n→14054Xe + 9438Sr + 210n

    23592U + 10n→14456Ba + 8936Kr + 3 10n

    Полученные осколки притерпевают ядерные превращения, в основном бета-распад

    14054Xe → 14055Sr →14056Ba→14057La→14058Ce (стабильный)
    9437Rb→9438Sr→9439Y→9440Zn (стабильный)

    Каждый из 2-3 образовавшихся при делении ядер урана нейтронов способен вызвать новый акт деления и т.д. Количество нейтронов нарастает в геометрической прогрессии - возникает ценная реакция деления, приобретающая взрывной характер.

    Цепная реакция деления может начаться и происходить, если масса урана-235 достигает определенной величины. Наименьшее количество вещества, в котором возможна цепная ядерная реакция деления называется критической массой. Для урана-235 – это десятки кг, для урана-233 – 5-6 кг, для калифорния – около 1г. На этом основано устройство атомной бомбы. Ядерный заряд такой бомбы представляет 2 куска урана-235 или плутония-239 с докритической массой. При взрыве обычного взрывчатого вещества обе части соединяются, давая сверхкритическую массу. В земной атмосфере всегда имеется некоторое количество нейтронов за счет космических лучей. Их достаточно для начала реакции деления и запуска цепной реакции взрывного характера. Всего смесь продуктов деления содержит более 200 изотопов 36 элементов (большинство из них с небольшими периодами полураспада).

    При использовании цепной реакции деления в ядерных реакторах создаются такие условия, что только один из нейтронов, образующихся при делении урана, будет вызывать акт деления. Количество делящихся в каждый момент ядер будет примерно одинаковым и количество выделяющейся энергии будет поддерживаться на каком-то определенном уровне, и выделяющееся тепло может быть использовано для получения электроэнергии (1г урана дает такое же количество энергии, как 2,5т угля). На этом основана работа атомных электростанций.

    Термоядерные реакции. Кроме процесса деления тяжелых ядер, существует и другой способ получения энергии – синтез тяжелых ядер из более легких. Такие реакции протекают при очень высоких температурах (многие миллионы градусов) поэтому их называют термоядерными. При такой температуре кинетическая энергия ядер достаточна для преодоления их кулоновских сил отталкивания. В этих условиях ядра легких элементов, двигаясь с высокой кинетической энергией, будут сближаться на очень малые расстояния – порядка 10-15 м и объединяться в ядра более тяжелых элементов. Примером таких реакций является синтез ядер гелия из ядер дейтерия и трития.
    21Н+21Н→32Не+10n; 31H+21Н→42He+10n; 21Н+21Н→31H+11р;

    32Не+32Не→42He+211р
    В приведенных реакциях выделение энергии, рассчитанное на один нуклон, превышает выделение энергии при реакциях деления тяжёлых ядер.

    На основе реакции синтеза ядер гелия из ядер дейтерия и трития основано действие водородной бомбы. Необходимая для начала этой реакции температура обеспечивается взрывом атомной бомбы, которая выполняет роль своеобразного запала. В водородной бомбе термоядерная реакция носит неконтролируемый характер. Осуществить управляемую термоядерную реакцию пока не удается.
    1.7. Период полураспада радионуклидов.

    Закон радиоактивного распада

    Для характеристики скорости распада радиоактивных элементов использую особую величину – период полураспада. Для каждого радиоактивного изотопа существует определенный интервал времени, в течение которого активность снижается в два раза. Этот интервал времени и носит название период полураспада.

    Период полураспада (Т½) – это время, в течении которого распадается половина исходного количества радиоактивных ядер. Период полураспада – величина строго индивидуальная для каждого радиоизотопа. У одного и того же элемента могут быть изотопы с разными периодами полураспада. Имеются изотопы с периодом полураспада от долей секунды до миллиардов лет (от 3х10-7 с до 5х1015 лет). Так для полония-214 Т½ равен 1,6·10-4 с, для кадмия-113 - 9,3х1015 лет. Радиоактивные элементы подразделяются на короткоживущие (период полураспада исчисляется часами и днями) – родон-220 – 54,5с, висмут-214 – 19,7мин, иттрий-90 – 64 часа, стронций - 89 - 50,5 дня и долгоживущие (период полураспада исчисляется годами) – радий-226 – 1600 лет, плутоний-239 – 24390 лет, рений-187 – 5х1010 лет, калий-40 – 1,32х109 лет.

    Из элементов, выброшенных при аварии на ЧАЭС, отметим периоды полураспада следующих элементов: йод-131 - 8,05 дня, цезий-137 - 30 лет, стронций-90 - 29,12 лет, плутоний-241 - 14,4 года, америций-241 - 432 года.

    Для каждого радиоактивного изотопа средняя скорость распада его ядер постоянная, неизменная и характерная только для данного изотопа. Количество радиоактивных атомов какого-либо элемента, распадающихся за промежуток времени пропорционально общему количеству имеющихся радиоактивных атомов.

    dN = - Ndt

    где dN- количество распадающихся ядер,

    dt - промежуток времени,

    N - количество имеющихся ядер,

    - - коэффициент пропорциональности (постоянная радиоактивного распада).

    Постоянная радиоактивного распада показывает вероятность распада атомов радиоактивного вещества в единицу времени, характеризует долю атомов данного радионуклида, распадающихся в единицу времени, т.е. попостоянная радиоактивного распада характеризует относительную скорость распада ядер данного радионуклида. Знак минус (- ) показывает, что количество радиоактивных ядер убывает со временем. Постоянную распада выражают в обратных единицах времени: с-1, мин-1 и т.д. Величину, обратную постоянной распада (r=1/), называют средней продолжительностью жизни ядра.

    Таким образом, закон радиоактивного распада устанавливает, что за единицу времени распадается всегда одна и та же доля нераспавшихся ядер данного радионуклида. Математический закон радиоактивного распада можно показать в виде формулы: λt

    Nt = No х е-λt

    где Nt- количество радиоактивных ядер, остающихся по окончании времени t,

    No-исходное количество радиоактивных ядер в момент времени t,

    е – основание натуральных логорифмов (=2,72) ,

    -- постоянная радиоактивного распада.

    1. промежуток времени (равен t-to).

    Т.е. число нераспавшихся ядер убывает со временем по экспоненте. По этой формуле можно рассчитать число нераспавшихся атомов в данный момент времени. Для характеристики скорости распада радиоактивных элементов на практике вместо постоянной распада пользуются периодом полураспада.

    Особенность радиоактивного распада в том, что ядра одного и того же элемента распадаются не все сразу, а постепенно, в различное время. Момент распада каждого ядра не может быть предсказан заранее. Поэтому распад любого радиоактивного элемента подчиняется статистическим закономерностям, носит вероятностный характер и может быть математически определен для большого количества радиоактивных атомов. Иными словами, распад ядер происходит неравномерно – то большими, то меньшими порциями. Из этого следует практический вывод, что при одном и том же времени измерения числа импульсов от радиоактивного препарата мы можем получить разные значения. Следовательно, для получения верных данных необходимо измерения одной и той же пробы проводить не один, а несколько раз, и чем больше, тем точнее будут результаты.


      1   2   3   4   5   6   7   8   9   ...   15


    написать администратору сайта