Главная страница
Навигация по странице:

  • 5.2.3. Щитовидная железа

  • Фолликулы заполнены коллоидом и содержат гормоны тироксин и трийодтиронин, которые связаны с белком тиреоглобулином.

  • В межфолликулярном пространстве находятся также парафолликулярные клетки (C‑клетки), в которых выраба­тывается гормон тиреокальцитонин. Биосинтез

  • Активность тироксина в несколько раз меньше, чем трийодтирони­на. Кроме того, эффекты трийодтиронина имеют меньший латентный период, поэтому его действие развивается значительно быстрее.

  • Кальцитонин

  • В костной ткани тиреокальцитонин усиливает актив­ность остеобластов и процессы минерализации. В почках и кишеч­нике угнетает реабсорбцию кальция и стимулирует обратное вса­сывание фосфатов

  • Секреция гормонов щитовидной железы регулируется гипоталамическим тиреолиберином.

  • 5.2.4. Околощитовидные железы

  • . Он обеспе­чивает увеличение уровня кальция в крови. Органами-мишенями для этого гормона являются кости и почки. В костной ткани пара­тирин усиливает функцию остеокластов

  • В канальцевом аппарате почек паратирин стимулирует ре­абсорбцию кальция и тормозит реабсорбцию

  • Альдостерон усиливает в дистальных канальцах почек реабсорбцию ионов Na

  • Основным фактором, регулирующим секрецию альдостерона, яв­ляется функционирование

  • Глюкокортикоиды угнетают процессы фа­гоцитоза в очаге воспаления.

  • Противоаллергическое действие

  • 5.2.6. Поджелудочная железа

  • Лк-гумор регул-частн. Лекция 2 от 20 апреля 2002 г. Гуморальная регуляция физиологических функций


    Скачать 262 Kb.
    НазваниеЛекция 2 от 20 апреля 2002 г. Гуморальная регуляция физиологических функций
    Дата03.12.2021
    Размер262 Kb.
    Формат файлаdoc
    Имя файлаЛк-гумор регул-частн.doc
    ТипЛекция
    #290269
    страница2 из 3
    1   2   3

    Гормоны нейрогипофиза. Антидиуретический гормон (АДГ). В общем виде действие АДГ сводится к двум основным эффектам:

    1) стимулируется реабсорбция воды в дистальных канальцах почек. В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плот­ность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. Под дей­ствием АДГ происходит активация фермента аденилатциклазы, локализующегося на поверхности базолатеральной (обращенной к интерстицию) мембраны клеток эпителия почечных канальцев. Акти­вация аденилатциклазы приводит к накоплению в цитоплазме этих клеток цАМФ. Последний диффундирует в область апикальной (об­ращенной в просвет почечного канальца) мембраны и стимулирует образование в цитоплазме белковых везикул, которые затем вклю­чаются в структуру апикальной мембраны и образуют в ней каналы, высокопроницаемые для воды. В результате вода из просвета по­чечных канальцев поступает в цитоплазму клеток эпителия каналь­цев, перемещается к базолатеральной мембране и, проникая через нее, попадает в интерстициальную ткань. После разрушения АДГ белковые везикулы элиминируются из структуры апикальной мем­браны. В результате этого последняя становится непроницаемой для воды;

    2) в больших дозах АДГ вызывает сужение артериол, что при­водит к увеличению АД. Развитию гипертензии способствует также наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов. В связи с тем что введение АДГ приводит к повышению АД, этот гормон получил также название «вазопрессин». Однако поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, то считают, что в физиологических условиях значимость его вазоконстрикторного влияния невелика. С другой стороны, раз­витие вазоконстрикции может иметь существенное адаптивное зна­чение при некоторых патологических состояниях, например при острой кровопотере, сильных болевых воздействиях, поскольку в этих условиях в крови может присутствовать большое количество АДГ.

    Основная часть АДГ синтезируется в супраоптическом ядре ги­поталамуса (примерно 5/6 от общего количества), меньшая часть — в паравентрикулярном ядре. Секреция этого гормона усиливается при повышении осмотического давления крови. Последнее можно продемонстрировать путем введения гипертонического раствора в сосуды, питающие гипоталамус. В этом случае происходит раздражение осморецепторов, что приводит к увеличению выработки гор­мона в супраоптическом и паравентрикулярном ядрах и повышенной его секреции из задней доли гипофиза в кровь. Важным стимулом для регуляции секреции АДГ является также изменение объема циркулирующей крови. Показано, что при снижении последнего на 15 ‑ 20% количество образующегося АДГ может увеличиваться в несколько десятков раз. В этом случае интенсивность секреции гормона меняется в зависимости от характера информации, поступающей в гипоталамус от волюморецепторов, реагирующих на рас­тяжение кровью и локализующихся в правом предсердии, и барорецепторов, расположенных в аортальной и синокаротидной зонах, а также в легочной артерии.

    Недостаточная секреция АДГ приводит к развитию несахарного мочеизнурения (diabetes insipidus), основными проявлениями кото­рого являются сильная жажда (полидипсия) и потеря большого количества жидкости с выделяемой мочой (полиурия). Наблюдается учащенное мочеиспускание (поллакиурия), в результате которого больной за сутки выделяет до 10 – 20 л мочи низкой относительной плотности. Симптомы этого заболевания проходят при введении синтетического вазопрессина или препаратов, приготовленных из задней доли гипофиза животных.

    Окситоцин. Эффекты этого гормона реализуются главным образом в двух направлениях:

    1) окситоцин вызывает сокращение гладкой мускулатуры матки. Установлено, что при удалении гипофиза у животных родовые схват­ки становятся длительными и малоэффективными. Таким образом, окситоцин является гормоном, обеспечивающим нормальное проте­кание родового акта (отсюда произошло и его название — от лат. оху — сильный, tokos — роды). Адекватное проявление этого эф­фекта возможно при условии достаточной концентрации в крови эстрогенов, которые усиливают чувствительность матки к окситоцину;

    2) окситоцин принимает участие в регуляции процессов лактации. Он усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока.

    Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного вскарм­ливания.

    5.2.3. Щитовидная железа

    Основной структурно-функциональной единицей щитовидной же­лезы являются фолликулы. Они представляют собой округлые по­лости, стенка которых образована одним рядом клеток кубического эпителия. Фолликулы заполнены коллоидом и содержат гормоны тироксин и трийодтиронин, которые связаны с белком тиреоглобулином. В межфолликулярном пространстве проходят капилляры, обеспечивающие обильную васкуляризацию фолликулов. В щито­видной железе объемная скорость кровотока выше, чем в других органах и тканях. В межфолликулярном пространстве находятся также парафолликулярные клетки (C‑клетки), в которых выраба­тывается гормон тиреокальцитонин.

    Биосинтез тироксина и трийодтиронина осуществля­ется за счет йодирования аминокислоты тирозина, поэтому в щи­товидной железе происходит активное поглощение йода. Содержание йода в фолликулах в 30 раз превышает его концентрацию в крови, а при гиперфункции щитовидной железы это соотношение стано­вится еще больше. Поглощение йода осуществляется за счет активного транспорта. После соединения тирозина, входящего в состав тиреоглобулина, с атомарным йодом образуются монойодтирозин и дийодтирозин. За счет соединения 2 молекул дийодтирозина обра­зуется тироксин; конденсация моно- и дийодтирозина приводит к образованию трийодтиронина. В дальнейшем за счет действия протеаз, расщепляющих тиреоглобулин, происходит высвобождение в кровь активных гормонов.

    Активность тироксина в несколько раз меньше, чем трийодтирони­на. Кроме того, эффекты трийодтиронина имеют меньший латентный период, поэтому его действие развивается значительно быстрее. С другой стороны, содержание тироксина в крови примерно в 20 раз больше, чем трийодтиронина. Тироксин при дейодировании может превращаться в трийодтиронин. На основании этих фактов предпола­гают, что основным гормоном щитовидной железы является трийодтиронин, а тироксин выполняет функцию его предшественника.

    Действие гормонов щитовидной железы проявляется резким уси­лением метаболической активности организма. При этом ускоряются все виды обмена веществ (белковый, липидный, углеводный), что приводит к увеличению энергообразования и повышению основного обмена. В детском возрасте это имеет существенное значение для процессов роста, физического развития, а также энергетического обеспечения созревания ткани мозга, поэтому недостаток гормонов щитовидной железы у детей приводит к задержке умственного и физического развития (кретинизм). У взрослых при гипофункция щитовидной железы наблюдается торможение нервно-психической активности (вялость, сонливость, апатия); при избытке гормонов, наоборот, наблюдаются эмоциональная лабильность, возбуждение, бессонница.

    В результате активизации всех видов обмена веществ под вли­янием гормонов щитовидной железы изменяется деятельность практически всех органов. Усиливается теплопродукция, что приводит к повышению температуры тела. Ускоряется работа сердца (тахи­кардия, повышение АД, увеличение минутного объема крови), сти­мулируется деятельность пищеварительного тракта (повышение ап­петита, усиление перистальтики кишечника, увеличение секретор­ной активности). При гиперфункции щитовидной железы обычно снижается масса тела. Недостаток гормонов щитовидной железы приводит к изменениям обратного характера.

    Кальцитонин, или тиреокальцитонин, снижает уровень кальция в крови. Он действует на костную систему, почки и ки­шечник, вызывая при этом эффекты, противоположные действию паратирина. В костной ткани тиреокальцитонин усиливает актив­ность остеобластов и процессы минерализации. В почках и кишеч­нике угнетает реабсорбцию кальция и стимулирует обратное вса­сывание фосфатов. Реализация этих эффектов приводит к гипокальциемии.

    Секреция гормонов щитовидной железы регулируется гипоталамическим тиреолиберином. Выработка тироксина и трийодтиронина резко усиливается в условиях длительного эмоционального возбуж­дения. Отмечено также, что секреция этих гормонов ускоряется при снижении температуры тела.

    Т3, Т4 обладают мощным влиянием на величину основного обмена. При гиперфункции щитовидной железы основной обмен может возрасти более чем на 50 %, а при гипофункции (микседеме) снижается в среднем на 30 %.1




    5.2.4. Околощитовидные железы

    Регуляция обмена кальция осуществляется в основном за счет действия паратирина и кальцитонина.

    Паратгормон, или паратирин, паратиреоидный гормон, синтезируется в околощитовидных железах. Он обеспе­чивает увеличение уровня кальция в крови. Органами-мишенями для этого гормона являются кости и почки. В костной ткани пара­тирин усиливает функцию остеокластов, что способствует деминерализации кости и повышению уровня кальция и фосфора в плазме крови. В канальцевом аппарате почек паратирин стимулирует ре­абсорбцию кальция и тормозит реабсорбцию фосфатов, что приводит к гиперкальциемии и фосфатурии. Развитие фосфатурии может иметь определенное значение в реализации гиперкальциемического эффекта гормона. Это связано с тем, что кальций образует с фос­фатами нерастворимые соединения; следовательно, усиленное вы­ведение фосфатов с мочой способствует повышению уровня свобод­ного кальция в плазме крови. Паратирин усиливает синтез кальцитриола, который является активным метаболитом витамина D3. Последний вначале образуется в неактивном состоянии в коже под влиянием ультрафиолетового излучения, а затем под влиянием па­ратирина происходит его активация в печени и почках. Кальцитриол усиливает образование кальцийсвязывающего белка в стенке ки­шечника, что способствует обратному всасыванию кальция и раз­витию гиперкальциемии. Таким образом, увеличение реабсорбции кальция в кишечнике при гиперпродукции паратирина в основном обусловлено его стимулирующим действием на процессы активации витамина D3. Прямое влияние самого паратирина на кишечную стенку весьма незначительно.

    При удалении околощитовидных желез животное погибает от тетанических судорог. Это связано с тем, что в случае низкого содержания кальция в крови резко усиливается нервно-мышечная возбудимость. При этом действие даже незначительных по силе внешних раздражителей приводит к сокращению мышц.

    Гиперпродукция паратирина приводит к деминерализации и ре­зорбции костной ткани, развитию остеопороза. Резко увеличивается уровень кальция в плазме крови, в результате чего усиливается склонность к камнеобразованию в органах мочеполовой системы. Гиперкальциемия способствует развитию выраженных нарушений электрической стабильности сердца, а также образованию язв в пищеварительном тракте, возникновение которых обусловлено сти­мулирующим действием ионов Са2+ на выработку гастрина и соляной кислоты в желудке.

    Секреция паратирина и тиреокальцитонина (см. раздел 5.2.3) регулируется по типу отрицательной обратной связи в зависимости от уровня кальция в плазме крови. При снижении содержания кальция усиливается секреция паратирина и тормозится выработка тиреокальцитонина. В физиологических условиях это может наблю­даться при беременности, лактации, сниженном содержании кальция в принимаемой пище. Увеличение концентрации кальция в плазме крови, наоборот, способствует снижению секреции паратирина и увеличению выработки тиреокальцитонина. Последнее может иметь большое значение у детей и лиц молодого возраста, так как в этом возрасте осуществляется формирование костного скелета. Адекватное протекание этих процессов невозможно без тиреокальцитонина, оп­ределяющего абсорбцию кальция из плазмы крови и его включение в структуру костной ткани.


    5.2.5. Надпочечники

    В надпочечниках выделяют корковое и мозговое вещество.

    Кор­ковое вещество включает клубочковую, пучковую и сетчатую зоны. Кора надпочечников продуцирует более 40 стероидов (кортикостероидов).2 Ряд кортикостероидов жизненно необходим (гидрокортизон, кортикостерон, альдостерон). Обычно кортикостероиды разделяют на три группы.3

    1. Минералокортикоиды

      1. Альдостерон

      2. 11‑Дезоксикортикостерон

      3. 11‑Дезокси‑17‑оксикортикостерон

    2. Глюкокортикоиды

      1. Гидрокортизон

      2. 11‑Дегидрокортикостерон

      3. Кортикостерон

    3. Половые гормоны

      1. Андростерон

      2. Андростендиол

      3. Эстрон

      4. Прогестерон


    В клубочковой зоне происходит синтез минералокортикоидов, ос­новным представителем которых является альдостерон. В пучковой зоне синтезируются глюкокортикоиды. В сетчатой зоне вырабаты­вается небольшое количество половых гормонов.

    Альдостерон усиливает в дистальных канальцах почек реабсорбцию ионов Na+, одновременно увеличивая при этом выведение с мочой ионов К+. Аналогичное усиление натрий-калиевого обмена происходит в потовых и слюнных железах, а также в кишечнике. Это приводит к изменению электролитного состава плазмы крови (гипернатриемия и гипокалиемия). Кроме того, под влиянием альдостерона резко возрастает почечная реабсорбция воды, которая всасывается пассивно по осмотическому градиенту, создаваемому ионами Na+. Это приводит к существенным изменениям гемодинамики — увеличивается объем циркулирующей крови, возрастает АД. Вследствие усиленного обратного всасывания воды уменьшается диурез. При повышенной секреции альдостерона увеличивается склонность к отекам, что обусловлено задержкой в организме натрия и воды, повышением гидростатического давления крови в капиллярах и в связи с этим — усиленной экссудацией жидкости из просвета сосудов в ткани. За счет усиления процессов экссудации и отечности тканей альдостерон способствует развитию воспалительной реакции и является провоспалительным гормоном. Под влиянием альдосте­рона увеличивается также секреция ионов Н+ в канальцевом ап­парате почек, что приводит к снижению их концентрации во вне­клеточной жидкости и изменению кислотно-основного, состояния (алкалоз).

    Снижение секреции альдостерона вызывает усиленное выведение натрия и воды с мочой, что приводит к дегидратации тканей, снижению объема циркулирующей крови и уровня АД. В результате в организме возникают явления циркуляторного шока. Концентра­ция калия в крови при этом, наоборот, увеличивается, что является причиной нарушения электрической стабильности сердца и развития сердечных аритмий.

    Основным фактором, регулирующим секрецию альдостерона, яв­ляется функционирование ренин-ангиотензин-альдостероновой си­стемы. При снижении уровня АД наблюдается возбуждение сим­патической части автономной нервной системы, что приводит к сужению почечных сосудов. Уменьшение почечного кровотока спо­собствует усиленной выработке ренина в юкстагломерулярных нефронах почек. Ренин является ферментом, которые действует на плазменный α2‑глобулин ангиотензиноген, превращая его в ангиотензин I. Образовавшийся ангиотензин I затем превращается в ангиотензин II, который увеличивает секрецию альдостерона. Вы­работка альдостерона может усиливаться также по механизму об­ратной связи при изменении электролитного состава плазмы крови, в частности при гипонатриемии или гиперкалиемии. В незначитель­ной степени секреция этого гормона стимулируется кортикотропином.

    Глюкокортикоиды вызывают следующие эффекты:

    1. Влияют на все виды обмена веществ:

    а) на белковый обмен. Под влиянием глюкокортикоидов стиму­лируются процессы распада белка. В основе этого эффекта лежит угнетение транспорта аминокислот из плазмы крови в клетки, что вызывает торможение последующих стадий белкового синтеза. Ка­таболизм белка приводит к снижению мышечной массы, остеопорозу;

    уменьшается также скорость заживления ран. Распад белка приводит к уменьшению содержания белковых компонентов в защитном мукоидном слое, покрывающем слизистую оболочку пищеварительного тракта. Последнее способствует увеличению агрессивного действия соляной кислоты и пепсина, что может привести к образованию пептических язв (ульцерогенный эффект глюкокортикоидов);

    б) на жировой обмен. Глюкокортикоиды усиливают мобилизацию жира из жировых депо и увеличивают концентрацию жирных кислот в плазме крови. Вместе с тем увеличивается отложение жира в области лица, груди и на боковых поверхностях туловища;

    в) на углеводный обмен. Введение глюкокортикоидов приводит к увеличению содержания глюкозы в плазме крови (гипергликемия). В основе этого эффекта лежит стимулирующее действие на процессы глюконеогенеза. Избыток аминокислот, образовавшихся в результате катаболизма белка, используется для синтеза глюкозы в печени. Кроме того, глюкокортикоиды ингибируют активность фермента гексокиназы, что препятствует утилизации глюкозы тканями. По­скольку при избытке глюкокортикоидов основным источником энер­гии являются жирные кислоты, образующиеся за счет усиленной мобилизации жира, определенное количество глюкозы сберегается от энергетических трат, что также способствует гипергликемии. Гипергликемический эффект является одним из компонентов за­щитного действия глюкокортикоидов при стрессе, поскольку в виде глюкозы в организме создается запас энергетического субстрата, расщепление которого помогает преодолеть действие экстремальных стимулов.

    Таким образом, по характеру своего влияния на углеводный обмен глюкокортикоиды являются антагонистами инсулина. При длительном приеме этих гормонов с целью лечения или повышенной их выработке в организме может развиться стероидный диабет.

    2. Противовоспалительное действие. Глюкокортикоиды угнетают все стадии воспалительной реакции (альтерацию, экссудацию и пролиферацию), стабилизируют мембраны лизосом, что предотвра­щает выброс протеолитических ферментов, способствующих разви­тию воспалительной реакции. Глюкокортикоиды нормализуют по­вышенную проницаемость сосудов и тем самым уменьшают процессы экссудации и отечность тканей, а также выделение медиаторов воспалительной реакции. Глюкокортикоиды угнетают процессы фа­гоцитоза в очаге воспаления. Кроме того, они уменьшают выра­женность лихорадочной реакции, сопутствующей воспалительному процессу, за счет снижения выброса интерлейкина-1 из лейкоцитов, что снижает его стимулирующий эффект на центр теплопродукции в гипоталамусе.

    3. Противоаллергическое действие. Изложенные выше эффекты, лежащие в основе противовоспалительного действия, во многом определяют также ингибирующее действие глюкокортикоидов на развитие аллергической реакции (стабилизации лизосом, угнетение образования факторов, усиливающих аллергическую реакцию, сни­жение экссудации и др.). Гиперпродукция глюкокортикоидов при­водит к снижению числа эозинофилов в крови, увеличенное коли­чество которых обычно является «маркером» аллергии.

    4. Подавление иммунитета. Глюкокортикоиды угнетают как кле­точный, так и гуморальный иммунитет, что связано со снижением образования антител и процессов фагоцитоза. Длительный прием глюкокортикоидов приводит к инволюции тимуса и лимфоидной ткани, являющихся иммунокомпетентными органами, вследствие чего уменьшается количество лимфоцитов в крови. Подавление иммунитета может являться серьезным побочным эффектом при длительном приеме глюкокортикоидов, поскольку при этом возра­стает вероятность присоединения вторичной инфекции. С другой стороны, этот эффект может являться терапевтическим при исполь­зовании глюкокортикоидов для подавления роста опухолей, проис­ходящих из лимфоидной ткани, или для торможения реакций от­торжения при трансплантации органов и тканей.

    5. Участие в формировании необходимого уровня АД. Глюко­кортикоиды повышают чувствительность сосудистой стенки к дей­ствию катехоламинов, что приводит к гипертензии. Повышению уровня АД способствует также выраженное в небольшой степени минералокортикоидное действие глюкокортикоидов (задержка в ор­ганизме натрия и воды, сопровождающаяся увеличением объема циркулирующей крови). Гипертензивный эффект является одним из компонентов противошокового действия (шок всегда сопровож­дается резким падением АД). Противошоковая активность этих гормонов связана также с гипергликемией. Поскольку утилизация глюкозы мозговой тканью не зависит от инсулина, поступление глюкозы в клетки мозга определяется исключительно ее концент­рацией в плазме крови. В связи с этим вызванная глюкокортикоидами гипергликемия может расцениваться как важный фактор адекватного энергетического обеспечения мозга, что противодейст­вует развитию шока.

    В организме существует определенный суточный ритм выработки глюкокортикоидов. Основная масса этих гормонов вырабатывается в утренние часы (6—8 ч утра). Последнее учитывают при распре­делении суточной дозы гормонов в процессе длительного лечения глюкокортикоидами.

    Продукция глюкокортикоидов регулируется кортикотропином. Его выделение усиливается при действии на организм стрессорных стимулов различной природы, что является пусковым моментом для развития адаптационного синдрома.

    Половые гормоны. При избыточном образовании половых гормонов в сетчатой зоне развивается адреногенитальный синдром двух типов — гетеросексуальный и изосексуальный. Гетеросексуальный синдром развивается при выработке гормонов противопо­ложного пола и сопровождается появлением вторичных половых признаков, присущих другому полу. Изосексуальный синдром на­ступает при избыточной выработке гормонов одноименного пола и проявляется ускорением процессов полового развития.

    Катехоламины. В мозговом веществе надпочечников содер­жатся хромаффинные клетки, в которых синтезируются адреналин и норадреналин. Примерно 80% гормональной секреции приходится на адреналин и 20% — на норадреналин. Продукция этих гормонов резко усиливается при возбуждении симпатической части автоном­ной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию сти­муляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перистальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, уси­ление процессов катаболизма и образования энергии. Адреналин имеет большее сродство к β‑адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым α‑адренорецепторам. Поэтому вызываемые катехоламинами вазоконстрикция и увеличе­ние периферического сосудистого сопротивления в большей степени обусловлены действием норадреналина.


    5.2.6. Поджелудочная железа

    Эндокринная активность поджелудочной железы осуществляется панкреатическими островками (островками Лангерганса). В островковом аппарате представлено несколько типов клеток:

    1) α-клетки, в которых происходит выработка глюкагона;

    2) β-клетки, вырабатывающие инсулин;

    3) δ‑клетки, продуцирующие соматостатин, который угнетает секрецию инсулина и глюкагона;

    4) G-клетки, вырабатывающие гастрин;

    5) ПП-клетки, вырабатывающие небольшое количество панкре­атического полипептида, который является антагонистом холецистокинина.

    β-Клетки составляют большую часть островкового аппарата под­желудочной железы (примерно 60%). Они продуцируют инсу­лин, который влияет на все виды обмена веществ, но прежде всего снижает уровень глюкозы в плазме крови.

    Под воздействием инсулина существенно увеличивается прони­цаемость клеточной мембраны для глюкозы и аминокислот, что приводит к усилению биоэнергетических процессов и синтеза белка. Кроме того, в результате подавления активности ферментов, обес­печивающих глюконеогенез, тормозится образование глюкозы из аминокислот, поэтому они могут быть использованы для биосинтеза белка. Под влиянием инсулина уменьшается катаболизм белка. Таким образом, процессы образования белка начинают преобладать над процессами его распада, что обеспечивает анаболический эф­фект. По своему влиянию на белковый обмен инсулин является синергистом соматотропина. Более того, установлено, что адекватная стимуляция роста и физического развития под влиянием сомато­тропина может происходить только при условии достаточной кон­центрации инсулина в крови.

    Влияние инсулина на жировой обмен в конечном счете выража­ется в усилении процессов липогенеза и отложении жира в жировых депо. Поскольку под влиянием инсулина возрастает утилизация тканями и использование глюкозы в качестве энергетического суб­страта, определенная часть жирных кислот сберегается от энерге­тических трат и используется в последующем для липогенеза. Кроме того, дополнительное количество жирных кислот образуется из глю­козы, а также за счет ускорения их синтеза в печени. В жировых депо инсулин угнетает активность липазы и стимулирует образо­вание триглицеридов.

    Недостаточная секреция инсулина приводит к развитию сахарного диабета. При этом резко увеличивается содержание глюкозы в плаз­ме крови, возрастает осмотическое давление внеклеточной жидкости, что приводит к дегидратации тканей, появлению жажды. Поскольку глюкоза относится к «пороговым» веществам, то при определенном уровне гипергликемии тормозится ее реабсорбция в почках и воз­никает глюкозурия. Вследствие того что глюкоза является осмоти­чески активным соединением, в составе мочи возрастает также количество воды, что приводит к увеличению диуреза (полиурия). Усиливается липолиз с образованием избыточного количества не­связанных жирных кислот; происходит образование кетоновых тел. Катаболизм белка и недостаток энергии (нарушена утилизация глюкозы) приводит к астении и снижению массы тела.

    Избыточное содержание инсулина в крови вызывает резкую гипо­гликемию, что может привести к потере сознания (гипогликемическая кома). Это объясняется тем, что в головном мозге утилизация глюкозы не зависит от действия фермента гексокиназы, активность которой регулируется инсулином. В связи с этим поглощение глюкозы мозговой тканью определяется в основном концентрацией глюкозы в плазме крови. Ее снижение под действием инсулина может привести к нару­шению энергетического обеспечения мозга и потере сознания.

    Выработка инсулина регулируется механизмом отрицательной об­ратной связи в зависимости от концентрации глюкозы в плазме крови. Повышение содержания глюкозы способствует увеличению выработ­ки инсулина; в условиях гипогликемии образование инсулина, наобо­рот, тормозится. Секреция инсулина в некоторой степени возрастает при росте содержания аминокислот в крови. Увеличение выхода инсу­лина наблюдается также под действием некоторых гастроинтестинальных гормонов (желудочный ингибирующий пептид, холецистокинин, секретин). Кроме того, продукция инсулина может возрастать при стимуляции блуждающего нерва. В опытах на животных показа­но, что при пропускании крови с высоким содержанием глюкозы через сосуды головы, которая соединена с телом только блуждающими нер­вами, наблюдается увеличение продукции инсулина.

    α-Клетки, составляющие примерно 25% островковой ткани, вы­рабатывают глюка гон, действие которого приводит к гипергли­кемии. В основе этого эффекта лежат усиленный распад гликогена в печени и стимуляция процессов глюконеогенеза. Глюкагон спо­собствует мобилизации жира из жировых депо. Таким образом, действие глюкагона противоположно эффектам инсулина. Установ­лено, что, кроме глюкагона, существует еще несколько гормонов, которые по своему действию на углеводный обмен являются анта­гонистами инсулина. Введение этих гормонов приводит к гипергликемии. К ним относятся кортикотропин, соматотропин, глюкокортикоиды, адреналин, тироксин.

    5.2.7. Половые железы
    1   2   3


    написать администратору сайта