Главная страница
Навигация по странице:

  • 2.2 Переменные процентные ставки

  • 2.3. Реинвестирование

  • Лекция. Простые %%. Лекция Простые проценты Расчеты при начислении простых процентов


    Скачать 18.37 Kb.
    НазваниеЛекция Простые проценты Расчеты при начислении простых процентов
    АнкорЛекция
    Дата13.02.2022
    Размер18.37 Kb.
    Формат файлаdocx
    Имя файлаПростые %%.docx
    ТипЛекция
    #360108

    Лекция 2. Простые проценты

    2.1. Расчеты при начислении простых процентов

    Начисление простых процентов может происходить дискретно в зависимости от условий договора раз в год, полугодие, квартал или месяц. Иногда проценты начисляют и за более короткий срок.

    Пусть задана исходная стоимость денег. Формулой можно воспользоваться, например, для исчисления суммы погашения ссуды, предоставленной под простые проценты; размера срочного вклада с процентами и пр.

    Множитель называется множителем наращения простых процентов. Он показывает, во сколько раз увеличилась сумма вклада (или долга) к концу срока финансовой операции.

    Пример. Вклад 100 000 рублей размещен в сберегательный банк на 3 года под обычные простые проценты 4,5 % годовых. Определите наращенную сумму вклада.

    Наращение суммы вклада (процентные деньги) составит 13500 рублей.

    В рассмотренном примере срок финансовой операции составляет 3 года. Однако, как правило, к наращению по простым процентам прибегают при выдаче краткосрочных ссуд, срок которых менее года (n<1). Рассмотрим более общий случай, когда n не является целым числом.

    Отметим, что при использовании формулы (5) размерности n и ί должны быть согласованы. Если n измеряется в годах, то ί – ставка годовых процентов (показывает рост за год).

    В случае если продолжительность финансовой операции не равна целому числу лет, периоды начисления процентов n выражают дробным числом, как отношение продолжительности финансовой сделки в днях к количеству дней в году (или отношение продолжительности финансовой сделки в месяцах к числу месяцев в году).

    Обозначим срок операции (time), В качестве временной базы выберем продолжительность года, выраженную в тех же единицах.

    Иногда при расчете простых процентов предполагают, что год состоит из 12 месяцев по 30 дней в каждом. Проценты, рассчитанные по временной базе Y=360 дней, называются обыкновенными или коммерческими процентами (ordinary interest). При использовании действительной продолжительности года (365 или 366 дней) получают точные проценты (exact interest).

    Число дней финансовой операции также можно измерить приближенно и точно. В первом случае ее продолжительность определяется из условия, согласно которому месяц принимается равным 30 дням. Точное число дней финансовой операции определяется путем подсчета числа дней между датой ее начала и датой ее окончания по календарю. Первый и последний день финансовой операции считается за один день. На практике для подсчета ее продолжительности можно пользоваться. В таблицах приведены порядковые номера дней в году (для обычного и високосного годов соответственно). Срок проведения финансовой операции рассчитывается как разность между порядковыми номерами даты ее окончания и даты начала. Таким образом, на практике применяют три варианта расчетов:

    Точные проценты с точным числом дней ссуды.

    Этот вариант дает самые точные результаты. Он обозначается 365/365.Он применяется центральными банками многих стран и крупными коммерческими банками, например в Великобритании.

    Обыкновенные проценты с точным числом дней ссуды.

    Этот метод, иногда называемый банковским (Banker’s Rule), распространен в ссудных операциях коммерческих банков, в частности во Франции. Он обозначается как 365/360. Этот вариант дает несколько больший результат, чем применение точных процентов.

    Обыкновенные проценты с приближенным числом дней ссуды.

    Такой метод применяется тогда, когда не требуется большой точности, например при промежуточных расчетах. Он принят в практике коммерческих банков Германии. Этот метод обозначается как 360/360.

    Вариант расчета с точными процентами и приближенным числом дней ссуды лишен смысла и не применяется.

    Пример. Ссуда в размере 1 млн. руб. выдана 20 января до 5 октября включительно под 18 % годовых. Какую сумму должен заплатить должник в конце срока? Найти решение тремя способами.

    Определим точное число дней ссуды. Дате 20 января соответствует № 20. Дате 5 октября - № 278. Таким образом, точное число дней ссуды составит 258 дней (278 – 20).

    Определим приближенное число дней ссуды. При этом продолжительность каждого месяца принимается за 30 дней. Количество полных месяцев срока ссуды равно 8 (с 20 января по 20 сентября). Срок от 20 сентября по 5 октября составляет 15 дней: (30-20)+5. Приближенное число дней ссуды рассчитывается таким образом: 8·30+15=240+15=255 дней.

    Определим величину долга в конце срока тремя методами:

    1.Точные проценты с точным числом дней ссуды (365/365):

    2. Обыкновенные проценты с точным числом дней ссуды (365/360)

    3. Обыкновенные проценты с приближенным числом дней ссуды (360/360)

    2.2 Переменные процентные ставки

    В условиях динамично меняющегося состояния финансового рынка при заключении финансового соглашения может быть установлена не только постоянная на весь период финансовой сделки, но и переменная, изменяющаяся во времени процентная ставка.

    Пример. Банк предлагает вкладчикам следующие условия по срочному годовому депозиту: первое полугодие процентная ставка 12% годовых, каждый следующий квартал ставка возрастает на 2,5%. Проценты начисляются только на первоначально внесенную сумму вклада.

    Определите наращенную за год сумму, если вкладчик поместил в банк на этих условиях 400,0 тыс. руб.

    2.3. Реинвестирование

    Если по прошествии некоторого периода зафиксированная к данному моменту наращенная сумма инвестируется вновь, то такая операция называется реинвестированием (повторным инвестированием) или капитализацией полученных на каждом этапе наращения средств. В этом случае проценты начисляют на уже наращенные в предыдущем периоде суммы, т.е. происходит многоразовое наращение.

    Пример. Клиент поместил в банк 500,0 тыс. руб. Какова будет наращенная за 3 месяца сумма вклада, если за первый месяц начисляются проценты в размере 10% годовых, а каждый последующий месяц процентная ставка возрастает на 5% с одновременной капитализацией процентного дохода?




    написать администратору сайта