Главная страница
Навигация по странице:

  • 2.4 Свойства и классификация генов Ген - единица наследственности и изменчивости. По современным представлениям, ген

  • Классификация генов

  • 2.5 Уровни организации наследственного материала

  • Лекция 3. Наследственность, среда и патология. Цитологические и молекулярные основы изменчивости организмов

  • Изменчивость

  • 4.1 Ненаследственная изменчивость Ненаследственная (фенотипическая) изменчивость

  • генетика. Лекция Введение. Молекулярные основы наследственности


    Скачать 238.64 Kb.
    НазваниеЛекция Введение. Молекулярные основы наследственности
    Анкоргенетика.docx
    Дата27.11.2017
    Размер238.64 Kb.
    Формат файлаdocx
    Имя файлагенетика.docx
    ТипЛекция
    #10489
    страница4 из 6
    1   2   3   4   5   6

    2.3 Биологический синтез белка

    ДНК – носитель всей генетической информации в клетке – непосредственного участия в синтезе белка (реализации этой наследственной информации) не принимают. В клетках животных и растений молекулы ДНК отделены ядерной мембраной от цитоплазмы, где происходит синтез белков. К рибосомам - местам сборки белков - высылается из ядра посредник, который несет скопированную информацию и способен пройти через поры ядерной мембраны. Таким посредником является информационная РНК, которая участвует в матричных реакциях.

    Матричные реакции - это реакции синтеза новых соединений на основе «старых» макромолекул, выполняющих роль матрицы, т. е. формы, образца для копирования новых молекул. Матричными реакциями реализации наследственной информации, в которых принимают участие ДНК и РНК являются:

    1. Репликация ДНК – удвоение молекул ДНК, благодаря которым передача генетической информации осуществляется от поколения к поколению. Матрицей является материнская ДНК.

    2. Транскрипция (лат. transcription – переписывание) – это синтез молекул РНК по принципу комплементарности на матрице одной из цепей ДНК. Происходит в ядре под действием фермента ДНК-зависимой РНК-полимеразы. Информационная РНК – это одноцепочная молекула, и копирование гена идет с одной нити двуцепочной молекулы ДНК. Язык триплетов ДНК переводится на язык кодонов и-РНК. В результате транскрипции разных генов синтезируются все виды РНК. Затем и-РНК, т-РНК, р-РНК через поры в ядерной оболочке выходят в цитоплазму клетки для выполнения своих функций.

    3. Трансляция (лат. translatio – передача, перевод) – это синтез полипетдиных цепей белков на матрице зрелой и-РНК, осуществляемый рибосомами. В этом процессе выделяют несколько этапов:

    Этап первый – инициация (начало синтеза). В цитоплазме на один из концов и-РНК (именно на тот, с которого начинался синтез молекулы в ядре) вступает рибосома и начинает синтез полипептида. Молекула т-РНК, транспортирующая аминокислоту глутамин (т-РНК ГЛН), соединяется с рибосомой и прикрепляется к началу цепи и-РНК (кодом УАГ). Рядом с первой т-РНК (не имеющей никакого отношения к синтезирующему белку) присоединяется вторая т-РНК с аминокислотой. Если антикодон т-РНК, то между аминокислотами возникает пептидная связь, которую образует определенный фермент. После этого т-РНК покидает рибосому (уходит в цитоплазму за новой аминокислотой), а и-РНК перемещается на один кодон.

    Второй этап – элонгация (удлинения цепи). Рибосома перемещается по молекуле и-РНК не плавно, а прерывисто, триплет за триплетом. Третья т-РНК с аминокислотой связывается своим антикодоном с кодоном и-РНК. При установлении комплиментарности связи рибосома делает еще шаг на один «кодон», а специфический фермент «сшивает» пептидной связью вторую и третью аминокислоту - образуется пептидная цепь. Аминокислоты в растущей полипептидной цепи соединяются в той последовательности, в которой расположены шифрующие их кодоны и-РНК (рис. 14).

    Рис. 14. Схема биосинтеза белка:

    1 - и-РНК; 2 - субъединицы рибосомы; 3 - т-РНК с аминокислотами,

    4- кодон и-РНК; 5- антикодон т-РНК; 6- т-РНК без аминокислот; 7-полипептид

     

    Третий этап – терминация (окончание синтеза) цепи. Происходит при трансляции рибосомой одного из трех «нонсенс-кодонов» (УАА, УАГ, УГА). Рибосомы соскакивают с и-РНК, синтез белка завершен.

    Таким образом, зная порядок расположения аминокислот в молекуле белка, можно определить порядок нуклеотидов (триплетов) в цепи и-РНК, а по ней – порядок пар нуклеотидов в участке ДНК и наоборот, учитывая принцип комплиментарности нуклеотидов.

    Но в процессе матричных реакций могут происходить изменения – мутации. Это генные мутации на молекулярном уровне - результат различных повреждений в молекулах ДНК – затрагивают один или несколько нуклеотидов. Все формы генных мутаций можно разделить на две большие группы.

    Первая группа- сдвиг рамки считывания – представляет собой вставки или выпадения одной или нескольких дар нуклеотидов. В зависимости от места нарушения изменяется то или иное количество кодонов. Это наиболее тяжелые повреждения генов, так как в белок будут включены совершенно другие аминокислоты. На такие делеции и вставки приходится 80% всех спонтанных генных мутаций.

    Наибольшим повреждающим действием обладают нонсенс – мутации, которые связаны с появлением кодонов-терминаторов, вызывающих остановку синтеза белка. Это может привести к преждевременному окончанию синтеза белка, который быстро деградирует. Результат – гибель клетки или изменение характера индивидуального развития.

    Мутации, связанные с заменой, выпадением или вставкой в кодирующей части гена фенотипически проявляются в виде замены аминокислот в белке. В зависимости от природы аминокислот и функциональной значимости нарушенного участка, наблюдается полная или частичная потеря функциональной активности белка. Это выражается в снижении жизнеспособности, изменении признаков организмов и т.д.

    Вторая группа– это генные мутации с заменой пар оснований нуклеотидов. Существуют два типа замены оснований:

    1. Транзиция – замена одного пуринового на другое пуриновое основание (А на Г или Г на А) или одного пиримидинового на другое пиримидиновое (Ц на Т или Т на Ц).

    2. Трансверсия– замена одного пуринового основания на пиримидиновое или наоборот (А на Ц, или Г на Т, или А на У). Примером трансверсии является серповидно-клеточная анемия, возникающая из-за наследственного нарушения структуры гемоглобина. У мутантного гена, кодирующего одну из цепей гемоглобина, нарушен всего один нуклеотид, и в и-РНК происходит замена аденина на урацил (ГААна ГУА). В результате происходит изменение биохимического фенотипа, в β-цепи гемоглобина глутаминовая кислота заменена на валин. Эта замена изменяет поверхность гемоглобиновой молекулы: вместо двояковогнутого диска клетки эритроцитов становятся похожи на серпы и либо закупоривают мелкие сосуды, либо быстро удаляются из кровообращения, что быстро приводит к анемии.

    Таким образом, значимость генных мутаций для жизнедеятельности организма неодинакова:

    • некоторые «молчащие мутации» не оказывают влияния на структуру и функцию белка (например, замена нуклеотида, не приводящая к замене аминокислот);

    • некоторые мутации ведут к полной потере функции белка и гибели клеток (например, нонсенс-мутации);

    • другие мутации - при качественном изменении и-РНК и аминокислот ведут к изменению признаков организма;

    • некоторые мутации, изменяющие свойства белковых молекул, оказывают повреждающее действие на жизнедеятельность клеток – такие мутации обусловливают тяжелое течение болезней (например, трансверсии).

     

    2.4 Свойства и классификация генов

    Ген - единица наследственности и изменчивости. По современным представлениям, ген– это участок молекулы ДНК, несущий информацию о синтезе определенного полипептида или нуклеиновой кислоты. Гены, определяющие развитие альтернативных признаков, называются аллельными (аллелями). Ген, преобладающий в паре аллелей, называется доминантным, а ген, подавляемый своей аллелью, – рецессивным. Набор генов организма, которые он получает от своих родителей, называется генотипом. Совокупность всех внешних и внутренних признаков организма, развивающихся на базе генотипа под воздействием факторов среды, называется фенотипом, а отдельный признак – феном.

    В начале XX в. господствовало представление о стабильности и неизменяемости генов (А. Вейсман, У. Бэтсон), а если изменения и происходили, то самопроизвольно, независимо от влияния среды. Это ошибочное мнение было опровергнуто получением индуцированных мутаций Г.А. Надсоном и Г.С. Филипповым (1925 г.) на грибах, Г. Меллером (1927 г.) на дрозофиле и И.Л. Стадлером (1928 г.) на кукурузе. В 20-е годы было установлено, что хромосомы состоят из белка и нуклеиновых кислот. В 1927 г. Н.К. Кольцов предположил, что функции генов выполняют белковые молекулы.

    Гены характеризуются определенными свойствами: специфичностью, целостностью и дискретностью, стабильностью и лабильностью, плейотропией, экспрессивностью и пенетрантностью.

    • Специфичность гена заключается в том, что каждый структурный ген обладает только ему присущим порядком расположения нуклеотидов и детерминирует синтез определенного полипептида, р-РНК или т-РНК.

    • Целостность гена состоит в том, что при программировании синтеза полипептида он выступает как неделимая единица (цистрон), изменение порядка или количества нуклеотидов в которой приводит к перестройке структуры молекулы полипептида. Ген как функциональная единица неделим.

    • Дискретность гена определяется наличием в нем субъединиц (мутон, рекон). В настоящее время минимальной структурной субъединицей гена считают пару комплементарных нуклеотидов, а минимальной функциональной единицей – кодон.

    • Гены относительно стабильны и изменяются (мутируют) редко. Частота спонтанной мутации одного гена - примерно 10-5 на одно поколение.

    • Способность гена изменяться (мутировать) называется лабильностью.

    • Гены обладают свойством плейотропности (множественности) действия, т. е. один ген отвечает за проявление нескольких признаков. Это наблюдается при некоторых энзимопатиях, множественных врожденных пороках развития, например при синдроме Марфана.

    • Экспрессивность – степень фенотипического проявления данного гена.

    • Гены обладают пенетрантностью  – это частота проявления гена.

     

     

    Классификация генов

    Все гены по функциям подразделяются на структурные и функциональныеСтруктурные гены несут информацию о белках-ферментах и гистонах, о последовательности нуклеотидов в различных видах РНК. Функциональные гены регулируют работу структурных генов (регуляторы и операторы). В зависимости от механизма и вида регуляции среди них выделяют гены-модуляторы, ингибиторы, интенсификаторы, модификаторы.

    Генотип всех соматических клеток одинаковый, однако клетки разных тканей и органов одного организма сильно отличаются друг от друга (нервные, мышечные, эпителиальные, клетки соединительной ткани и др.). Значит, в разных клетках работают различные блоки генов. Область проявления действия данного гена называется полем его действия.Например, распределение волосяного покрова, развитие определенных дерматоглифических узоров на пальцах, ладонях и стопах и др.

    Гены функционируют непостоянно. Например, гены, детерминирующие синтез пигмента меланина, окрашивающего волосы человека, в пожилом возрасте перестают работать, и волосы седеют. Гены, детерминирующие синтез половых гормонов, интенсивно начинают функционировать с момента полового созревания, их функция снижается к старости. Время действия гена – это период его функционирования.

     

    2.5 Уровни организации наследственного материала

    Различают следующие уровни структурно-функциональной организации наследственного материала эукариот: генный, хромосомный и геномный.

    Элементарной структурой генного уровня организации наследственного материала является ген. Гены относительно независимы друг от друга, поэтому возможно дискретное (раздельное), независимое наследование (третий закон Менделя) и изменение (мутации) отдельных генов и соответствующих им признаков.

    Гены клеток эукариот распределены по хромосомам, образуя хромосомный уровень организации наследственного материала.Гены каждой хромосомы образуют группы сцепления и передаются вместе. Этот уровень организации – необходимое условие сцепления генов и перераспределения генов родителей у потомков при половом размножении (кроссинговер и случайное расхождение хромосом и хроматид к полюсам клетки в анафазах мейоза).

    Вся совокупность генов организма в функциональном отношении ведет себя как целое и образует единую систему – геномом (генотип). Один и тот же ген в разных генотипах может проявлять себя по-разному. Геномный уровень организации наследственного материала объясняет внутри- и межаллельное взаимодействие генов, расположенных как в одной, так и в разных хромосомах.

    Лекция 3. Наследственность, среда и патология.

    Цитологические и молекулярные основы изменчивости  организмов

    Генетика изучает не только явление наследственности, но и явление изменчивости. Изменчивость – это свойство живых организмов изменяться под действием факторов внешней и внутренней среды, которое выражается в приобретении новых и утрате старых признаков. Изменчивость обеспечивает разнообразие признаков и свойств у особей и групп особей любой степени родства.

    Причины изменчивости могут быть разные: разнообразие генотипов, разнообразие условий среды, определяющие разнообразие впроявлении признаков у организмов с одинаковыми генотипами.

    В современной биологии различают два типа изменчивости: генотипическую (наследственную) и фенотипическую (ненаследственную). Генотипическая изменчивость бывает комбинативной и мутационной. Фенотипическая (ненаследственная) изменчивость обеспечивает изменения в фенотипе и бывает модификационной и онтогенетической.

    Такое деление считают условным, так как не учитывается в достаточной степени характер реакций генотипа и их фенотипическая выраженность. Судить о происшедшем изменении можно лишь по фенотипу, т.е. по изменению признаков и свойств организма. Следовательно, изменения фенотипа происходят и при наследственной и при ненаследственной изменчивости. Кроме того, генотипическая изменчивость предполагает изменение генотипа, которое обусловливает фенотипические нарушения. Однако генетический контроль обязателен при обоих типах изменчивости; различия заключаются лишь в характере изменения состояния генотипа. При наследственной изменчивости происходят изменения сочетания генов генотипа (появляются новые комбинации их и хромосом) либо нарушается структура гена. При ненаследственной изменчивости структура генотипа не меняется, но может подавляться или усиливаться функциональная способность генов, изменяться характер, доминирования и т. д.

    Формирование различных типов изменчивости является следствием взаимодействия внешней среды, генотипа и фенотипа. Это можно представить в виде следующей схемы (2):

     

     

     

     

     

     

     

     

     

    Схема 2

    Реакции генотипа и фенотипа на воздействия внешней среды

     

    Внешняя среда

     

    Генотип

     

    Характер ответной реакции генотипа на воздействие внешней среды

     

     

    Изменение функциональ-

    ной активности генов, типа их взаимодействия

     

    Подавление функциональной активности гена

     

     

     

     


    Изменение структуры генотипа

     

     

     

    Изменение структуры генотипа в результате скрещивания

     

    Тип изменчивости

     

     

    Модифика-

    иии

    Морфозы

     

    Мутации

     

    Комбинаций

    Фенотипическое выражение изменчивости

    Изменение степени выраженности признака

    Качественные изменения признака – уродства развития

    Появление качественно нового признака

    Появление новой комбинации признаков

     

     

     

    Ненаследственная

    изменчивость

    Наследственная

    изменчивость

     

    4.1 Ненаследственная изменчивость

    Ненаследственная (фенотипическая) изменчивость– это тип изменчивости, отражающий изменения фенотипа под действием условий внешней среды, не затрагивающих генотип. Степень ее выраженности может определяться генотипом. Фенотипические различия у генетически тождественных особей, возникающие вследствие воздействия факторов внешней среды, называются модификациями. Различают возрастные, сезонные и экологические модификации. Они сводятся к изменению степени выраженности признака. Нарушения структуры генотипа при них не происходит.

    Возрастные (онтогенетические) модификации выражаются в виде постоянной смены признаков в процессе развития особи. У человека в процессе развития наблюдаются модификации морфофизиологических и психических признаков. К примеру, ребенок не сможет правильно развиваться и физически и интеллектуально, если в раннем детстве на него не будут оказывать влияние нормальные внешние и социальные факторы. Долгое пребывание ребенка в социально неблагополучной среде может вызвать необратимый дефект его интеллекта.

    Онтогенетическая изменчивость, как и сам онтогенез, детерминируется генотипом, где закодирована программа развития особи. Однако особенности формирования фенотипа в онтогенезе обусловлены взаимодействием генотипа и среды. Под влиянием необычных внешних факторов могут происходить отклонения в формировании нормального фенотипа.

    Сезонные модификации особей или целых популяций проявляются в виде генетически детерминированной смены признаков, (например, изменение окраски шерсти, появление подпушка у животных), происходящей в результате сезонных изменений климатических условий. Например, при высоких температурах у кролика развивается белая окраска шерсти, а при низких – темная. У сиамских котов в зависимости от сезона года палевая окраска шерсти сменяется на темно-палевую и даже коричневую.

    Экологических модификации представляют собой адаптивные изменения фенотипа в ответ на изменение условий среды. Экологические модификации фенотипически проявляются в изменении степени выраженности признака. Они могут возникать на ранних стадиях развития и сохраняться в течение всей жизни особи. Примерами могут служить крупные и мелкие экземпляры растений, выращенные на почвах, содержащих разное количество питательных веществ; низкорослые и слабожизнеспособные особи у животных, развивающиеся в плохих условиях и не получающие достаточного количества необходимых для жизни питательных веществ; число лепестков у цветков печеночницы, поповника, лютика, количество цветков в соцветии у растений и т. д.

    Экологические модификации затрагивают количественные (количество лепестков в цветке, потомства у животных, масса животных) и качественные (цвет кожи у человека под влиянием ультрафиолетовых лучей) признаки.

    Экологические модификации обратимы и со сменой поколений при условии изменения внешней среды могут не проявиться. Например, потомство низкорослых растений на хорошо удобренных почвах будет нормальной высоты; у человека с кривыми ногами вследствие рахита бывает вполне нормальное потомство. Если же в ряду поколений условия не меняются, степень выраженности признака в потомстве сохраняется то ее принимают за стойкий наследственный признак (длительные модификации). При изменении условий развития длительные модификации не наследуются. Предполагалось, что от хорошо дрессированных животных потомство получается с лучшими «актерскими» данными, чем от недрессированных. Потомство дрессированных животных действительно легче поддается воспитанию, но объясняется это тем, что оно наследует не приобретенные родительскими особями навыки, а способность к дрессировке, обусловленную наследуемым типом нервной деятельности.

    В большинстве случаев модификации носят адекватный характер, т.е. степень выраженности признака находится в прямой зависимости от вида и продолжительности действия того или иного фактора. Так, улучшение содержания скота способствует увеличению живой массы животных, плодовитости, удоя и жирности молока. Модификации носят приспособительный, адаптивный характер. Это означает, что в ответ на изменившиеся условия среды у особи проявляются такие фенотипические изменения, которые способствуют ее выживанию. Примером служит содержания эритроцитов и гемоглобина у лиц, оказавшихся высоко над уровнем моря. Но, приспособительны не сами модификации, а способность организма изменяться в зависимости от условий среды.

    Одним из основных свойств модификаций является их массовость. Она обусловливается тем, что один и тот же фактор вызывает примерно одинаковое изменение у особей, сходных генотипически.

    Модификационная изменчивость вызывается внешними факторами, но предел ее и степень выраженности признака контролируются генотипом. Так, однояйцевые близнецы сходны фенотипически и даже одинаково реагируют на разные условия (например, чаще всего переносят одни и те же заболевания). Но среда существенно влияет на формирование признаков. К примеру, у однояйцевых близнецов веснушки проявляются в разной степени в различных климатических условиях. У животных резкое ухудшение пищевого рациона может привести к похуданию одних и к смерти других особей. У человека при одинаково усиленном питании резко прибавит в массе тела гиперстеник, в меньшей степени - нормастеник, масса же астеника может вообще не измениться. Это свидетельствует о том, что генотип контролирует не только возможность организма изменяться, но и ее пределы. Предел модификации называется нормой реакции. Именно норма реакции, а не сами модификации, наследуется, т.е. наследуется способность к развитию того или иного признака. Норма реакции – это конкретная количественная я качественная характеристика генотипа, т.е. определенное сочетание генов в генотипе и характер их взаимодействия. К числу генных сочетаний и взаимодействий относят:

    • полигенную детерминацию признаков, когда часть полигенов, контролирующих развитие количественного признака, в зависимости от условий может переходить из гетерохроматинового состояния в эухроматиновое и обратно (предел модификации в данном случае определяется количеством полигенов в генотипе);

    • смену доминирования у гетерозигот при изменении внешних условий;

    • различные типы взаимодействия неаллельных генов;

    • экспрессивность мутации.

    Различают признаки с широкой (масса, урожайность и т.д.), узкой (например, процент жира в молоке, количество птенцов у птиц, содержание белков в крови у человека) и однозначной нормой реакции (большинство качественных признаков: масть животных, цвет волос и глаз у человека и др.).

    Иногда особи того или иного вида подвергаются влиянию таких вредных факторов, с которыми он не сталкивался в процессе эволюции, а токсичность их настолько велика, что исключает возможность модификационной изменчивости организма, определяемой нормой реакции. Такие агенты могут оказаться летальными, или их действие ограничивается индуцированием уродств развития. Уродства, или аномалии, развития называют морфозами. Морофозы – это различные нарушения формообразовательных процессов в период морфогенеза, приводящие к резкому изменению морфологических, биохимических, физиологических признаков и свойств организма. Примером морфозов служат дефекты развития крыльев и конечностей у насекомых, уродства раковины у моллюсков, уродства физического строения млекопитающих. Примером морфозов у человека является рождение, детей без конечностей, с непроходимостью кишечника, опухолью верхней губы, принявшее характер почти эпидемии в 1961 г. в ФРГ и некоторых странах Западной Европы и Америки. Причиной уродств послужило то, что матери в первые три месяца беременности принимали в качестве успокоительного препарата талидомид. Известен еще ряд веществ (тератогены, или морфогены), вызывающих уродства развития у человека. К ним относятся хинин, галлюциноген ЛСД, наркотики, алкоголь. Морфозы являются новыми, не имеющими исторической базы реакциями организма на необычные вредные факторы среды. Фенотипически они резко отличаются от модификаций: если модификация – это изменение степени выраженности признака, то морфоз – это резко измененный, нередко качественно новый признак.

    Морфозы возникают при воздействии вредных агентов (морфогенов) на ранние процессы эмбрионального развития. Эмбриогенез подразделяется на ряд этапов, в течение которых осуществляется дифференциация и рост определенных органов и тканей. Развитие признака начинается коротким периодом, получившим название «критического». В этот период организм отличается высокой чувствительностью и снижением репаративных (восстановительных) возможностей. В случае воздействия морфогенов в критические периоды обычный путь развития зачатка изменяется, так как при этом происходит индуцированная репрессия генов, отвечающих за его формирование. Развитие того или иного органа как бы перескакивает с одного пути на другой. Это приводит к отклонениям от нормального развития фенотипа и к формированию уродств. Нарушения эмбриогенеза иногда носят специфический характер, так как их фенотипическое выражение зависит от стадии развития организма в момент воздействия. Самые разные токсические агенты могут вызывать одинаковые или сходные аномалии, если на организм воздействовать в строго определенный период развития, когда повышена чувствительность соответствующих тканей и органов. Некоторые морфогены (химические вещества) в силу своих структурных особенностей могут вызвать специфические морфозы в результате избирательного воздействия в тот или иной период развития.

    Морфозы не носят приспособительного характера, поскольку реакция организма на индицирующие их факторы обычно бывает неадекватной. Частота индуцированных морфозов и чувствительность организмов при этом к вредным агентам-морфогенам контролируется генотипом и различна у разных особей одного и того же вида.

    Морфозы фенотипически часто сходны с мутациями и в таких случаях носят название фенокопий. Механизмы возникновения мутаций и фенокопий различны: мутация является следствием изменения структуры гена, а фенокопия – результатом нарушения реализации наследственной информации. Фенокопий могут возникать и вследствие подавления функции определенных генов. В отличие от мутаций, они не наследуются.

     
    1   2   3   4   5   6


    написать администратору сайта