Главная страница
Навигация по странице:

  • Схема кровотока в кортикальной системе

  • Схема кровотока в юкстамедуллярной системе

  • Капсула клубочка (capsula glomeruli)

  • Гломерулярная базальная мембрана

  • Проксимальные извитые канальцы

  • Дистальный извитой каналец

  • Гистология. Конспект лекций. Гиста конспект лекция (1). Лекция Введение. Общая гистология. Общая гистология введение, понятие ткани, классификация


    Скачать 2.46 Mb.
    НазваниеЛекция Введение. Общая гистология. Общая гистология введение, понятие ткани, классификация
    АнкорГистология. Конспект лекций
    Дата21.09.2022
    Размер2.46 Mb.
    Формат файлаpdf
    Имя файлаГиста конспект лекция (1).pdf
    ТипЛекция
    #689417
    страница23 из 32
    1   ...   19   20   21   22   23   24   25   26   ...   32
    Васкуляризация
    Кровь поступает к почкам по почечным артериям, которые, войдя в почки, распадаются на междолевые артерии, идущие между мозговыми пирамидами. На границе между корковым и мозговым веществом они разветвляются на дуговые
    (аркуатные) артерии. От них в корковое вещество отходят междольковые артерии, от которых в стороны расходятся внутридольковые артерии. От этих артерий начинаются приносящие артериолы клубочков, причем от верхних внутридольковых артерий

    178
    Золина Анна, ТГМА, леч.фак. приносящие артериолы направляются к коротким и промежуточным нефронам
    (кортикальная система), от нижних - к юкстамедуллярным нефронам (юкстамедуллярная система).
    Схема кровотока в кортикальной системе
    Приносящая артериола входит в почечное тельце и распадается на 45-50 капиллярных петель (сосудистый клубочек, glomerulus), которые «распластываются» вблизи внутреннего листка капсулы и взаимодействуют с его клетками (см. ниже).
    Сформировав своими петлями «первичную» сеть, капилляры собираются в выносящую артериолу, которая покидает почечное тельце вплотную к месту вхождения приносящей артериолы (сосудистый полюс почечного тельца). Итак, на "входе" и на "выходе" из клубочка имеются две артериолы - приносящая (vas afferens) и выносящая (vas efferens), в результате чего «первичную» капиллярную сеть можно отнести к разряду rete mirabile
    (чудесных сетей). Важно подчеркнуть, что внутренний диаметр выносящей артериолы значительно уже, чем приносящей; благодаря этому создается своеобразный гемодинамический подпор крови в «первичной» сети и, как следствие, феноменально высокое давление крови в капиллярах — около 60 мм.рт.ст. Именно это высокое давление и является одним из главных условий основного процесса, происходящего в почечном тельце, - процесса фильтрации.
    Выносящие артериолы, пройдя короткий путь, вновь распадаются на капилляры, оплетающие канальцы нефрона и образующие перитубулярную капиллярную сеть. В этих «вторичных» капиллярах давление крови значительно ниже, чем в «первичных» — около 10-12 мм.рт.ст., что способствует второй фазе мочеобразования - процессу реабсорбции (обратного всасывания) части жидкости и веществ из мочи в кровь. Из капилляров кровь перитубулярной сети собирается в верхних отделах коркового вещества сначала в звездчатые вены, а затем - в междольковые, в средних отделах коркового вещества - непосредственно в междольковые вены. Последние впадают в дуговые вены, переходящие в междолевые, которые образуют почечные вены, выходящие из ворот почек.
    Таким образом, нефроны в связи с особенностями кортикального кровообращения
    (высокое давление крови в капиллярах сосудистых клубочков и наличие перитубулярной сети капилляров с низким давлением крови) активно участвуют в мочеобразовании.
    Схема кровотока в юкстамедуллярной системе
    Приносящие и выносящие артериолы сосудистых клубочков околомозговых нефронов примерно одинакового диаметра или выносящие артериолы даже несколько шире. Поэтому давление крови в капиллярах этих клубочков ниже, чем в клубочках корковых нефронов. Выносящие клубочковые артериолы юкстамедуллярных нефронов идут в мозговое вещество, распадаясь на пучки тонкостенных сосудов, несколько более крупных, чем обычные капилляры, - т.н. прямые сосуды (vasa recta). В мозговом веществе как от выносящих артериол, так и от прямых сосудов отходят ветви для формирования мозговой перитубулярной капиллярной сети. Прямые сосуды образуют

    179
    Золина Анна, ТГМА, леч.фак. петли на различных уровнях мозгового вещества, поворачивая обратно. Нисходящие и восходящие части этих петель образуют особую противоточную систему сосудов, называемую сосудистым пучком (fasciculus vasculans). Капилляры мозгового вещества собираются в прямые вены, впадающие в дуговые вены.
    Вследствие этих особенностей околомозговые нефроны участвуют в мочеобразовании менее активно. В то же время юкстамедуллярное кровообращение играет роль шунта, т.е. более короткого и легкого пути, по которому проходит часть крови через почки в условиях сильного кровенаполнения, например, при выполнении человеком тяжелой физической работы.
    Фильтрация
    Фильтрация (главный процесс мочеобразования) происходит благодаря высокому давлению крови в капиллярах клубочков (50-60 мм.рт.ст.). В фильтрат (т.е первичную мочу) попадают многие компоненты плазмы крови - вода, неорганические ионы
    (например, Na+, K+, Cl- и другие ионы плазмы), низкомолекулярные органические вещества (в т.ч. глюкоза и продукты метаболизма - мочевина, мочевая кислота, желчные пигменты и др.), не очень крупные (до 50 кД) белки плазмы (альбумины, некоторые глобулины), составляющие 60-70 % всех плазменных белков. За сутки через почки проходит примерно 1800 л крови; из них в состав фильтрата перемещается почти 10 % жидкости. В итоге, суточный объѐм первичной мочи - около 180 л. Это более чем в 100 раз больше суточного объѐма конечной мочи (около 1,5 л). Следовательно, более 99 % воды, а также вся глюкоза, все белки, почти все прочие компоненты (кроме конечных продуктов обмена) должны возвращаться в кровь. Место, где разворачиваются все события процесса фильтрации — это почечное тельце.
    Почечное тельце
    Почечное тельце состоит из двух структурных компонентов - сосудистого клубочка и капсулы. Диаметр почечного тельца составляет в среднем 200 мкм. Сосудистый клубочек (glomerulus) состоит из 40-50 петель кровеносных капилляров. Их эндотелиальные клетки имеют многочисленные поры и фенестры (диаметром до 100 нм), которые занимают не менее 1/3 всей площади эндотелиальной выстилки капилляров.
    Эндотелиоциты располагаются на внутренней поверхности гломерулярной базальной мембраны. С наружной стороны на ней лежит эпителий внутреннего листка капсулы клубочка.
    Капсула клубочка (capsula glomeruli) по форме напоминает двустенную чашу, образованную внутренним и наружным листками, между которыми расположена щелевидная полость — полость капсулы, переходящая в просвет проксимального канальца нефрона. Наружный листок капсулы — гладкий, внутренний - комплементарно повторяет контуры капиллярных петель, покрывая 80% площади поверхности капилляров. Внутренний листок образован крупными (до 30 мкм) неправильной формы эпителиальными клетками — подоцитами (podocyti — буквально: клетки с ногами, см. ниже).

    180
    Золина Анна, ТГМА, леч.фак.
    Гломерулярная базальная мембрана, являющаяся общей для эндотелия кровеносных капилляров и подоцитов (и сформировавшаяся путем слияния эндотелиальной и эпителиальной базальных мембран), включает 3 слоя (пластинки): менее плотные (светлые) наружную и внутреннюю пластинки (laminae rara externa et interna) и более плотную (темную) промежуточную пластинку (lamina densa).
    Структурная основа темной пластинки представлена коллагеном IV типа, волокна которого формируют прочную решетку с размерами ячеек до 7 нм. Благодаря данной решетке темная пластинка играет роль механического сита, задерживающего частицы с большим диаметром.
    Светлые пластинки обогащены сульфатированными протеогликанами, которые поддерживают высокую гидрофильность мембраны и формируют ее отрицательный заряд, нарастающий и концентрирующийся от эндотелия и ее внутреннего слоя к наружному и к подоцитам. Данный заряд обеспечивает электрохимическое удерживание низкомолекулярных веществ, прошедших через эндотелиальный барьер. Помимо протеогликанов, светлые пластинки базальной мембраны содержат белок ламинин, обеспечивающий адгезию (прикрепление) к мембране ножек подоцитов и эндотелиоцитов капилляров.
    Подоциты - клетки внутреннего листка капсулы - имеют характерную отросчатую форму: от центральной ядросодержащей части (тела) отходят несколько больших широких отростков 1-го порядка — цитотрабекул, от которых в свою очередь начинаются многочисленные мелкие отростки 2-го порядка - цитоподии, прикрепляющиеся к гломерулярной базальной мембране несколько утолщенными
    «подошвами» с помощью ламинина. Между цитоподиями располагаются узкие фильтрационные щели, сообщающиеся через промежутки между телами подоцитов с полостью капсулы. Фильтрационные щели шириной до 40 нм закрыты фильтрационными щелевыми диафрагмами. Каждая такая диафрагма — сеточка переплетающихся тончайших нитей из белка нефрина (ширина ячеек — от 4 нм до 7 нм), представляющая собой барьер для большинства альбуминов и других крупномолекулярных веществ. Кроме того, на поверхности подоцитов и их ножек имеется отрицательно заряженный слой гликокаликса, «усиливающий» отрицательный заряд базальной мембраны. Подоциты синтезируют компоненты гломерулярной базальной мембраны, образуют вещества, регулирующие кровоток в капиллярах и ингибирующие пролиферацию мезангиоцитов (см. ниже). На поверхности подоцитов есть рецепторы к белкам системы комплемента и антигенам, что свидетельствует об активном участии этих клеток в иммуновоспалительных реакциях.
    Фильтрационный барьер
    Все три названных компонента - эндотелий капилляров сосудистого клубочка, подоциты внутреннего листка капсулы и общую для них гломерулярную базальную мембрану - принято перечислять в составе фильтрационного барьера, через который из крови в полость капсулы фильтруются составные части плазмы крови, образующие первичную мочу. Если более внимательно проанализировать данную ситуацию, то к

    181
    Золина Анна, ТГМА, леч.фак. данному перечислению необходимо внести некоторые уточнения; в этом случае состав собственно фильтрационного барьера будет выглядеть следующим образом:
    1. фенестры и щели эндотелия капилляров;
    2. 3-слойная базальная мембрана;
    3. щелевые диафрагмы подоцитов.
    Примечание: избирательная проницаемость фильтрационного барьера может регулироваться некоторыми биологически активными веществами: например, повышению скорости фильтрации способствует предсердный натрийуретический фактор
    (пептид), а также ряд воздействий со стороны мезангиальных компонентов.
    Мезангий
    В сосудистых клубочках почечных телец в тех местах, куда между капиллярами не могут проникнуть цитоподии подоцитов (т.е. около 20% площади поверхности), находится мезангий - комплекс клеток (мезангиоцитов) и основного вещества
    (матрикса).
    В большинстве руководств термин мезангий переводят как «межсосудистые клетки», хотя справедливости ради переведем правильно - брыжейка сосуда (в данном случае трофико-регуляторный компонент капиллярной петли сосудистого клубочка).
    Выделяют три популяции мезангиоцитов: гладкомышечную, макрофагическую и транзиторную (моноциты из кровотока). Мезангиоциты гладкомышечного типа способны синтезировать все компоненты матрикса, а также сокращаться под влиянием ангиотензина, гистамина, вазопрессина и таким образом регулировать клубочковый кровоток, изменяя общую «геометрию» капиллярных петель. Мезангиоциты макрофагического типа несут на своей поверхности Fc-рецепторы и другие компоненты главного комплекса гистосовместимости 2-го типа, необходимые для фагоцитарной функции, а также la-антиген. Благодаря этому создается возможность для локальной реализации в клубочках иммуновоспалительной реакции (к сожалению, в некоторых случаях и аутоиммунной).
    Основными компонентами матрикса являются адгезивный белок ламинин и коллаген, образующий тонкофибриллярную сеть. Вероятно, матрикс также участвует в фильтрации веществ из плазмы крови капилляров клубочка, хотя окончательно данный вопрос еще не решен.
    Реабсорбция
    Реабсорбция (обратный перенос веществ из первичной мочи в окружающий нефрон интерстиций и, в конечном итоге, в капилляры вторичной сосудистой сети) представляет собой весьма сложный каскад транспортных процессов, которые значительно различаются в разных отделах канальцевого аппарата нефрона. Различия в указанных процессах, естественно, обусловливают и различия в морфологии отделов нефрона. В функциональном отношении необходимо выделить по крайней мере 4 таких отдела: проксимальные извитые канальцы, петлю нефрона, дистальные извитые канальцы, и собирательные трубочки.

    182
    Золина Анна, ТГМА, леч.фак.
    Проксимальные извитые канальцы
    В проксимальных извитых канальцах происходит активная (т.е. за счѐт специально расходуемой энергии) реабсорбция значительной части воды и ионов, практически всей глюкозы и всех белков. Данная реабсорбция не регулируется гормонами и поэтому называется облигатной.
    Белки переносятся путѐм пиноцитоза (из просвета канальца в цитоплазму канальцевых эпителиоцитов на их апикальных полюсах), который последовательно сменяется экзоцитозом (из цитоплазмы эпителиоцитов на базальных полюсах через базальную мембрану в капилляры вторичной сети). При этом многочисленные пиноцитозные пузырьки насыщают всю цитоплазму эпителиоцитов и продвигаются по ней с помощью ориентированных микротрубочек (здесь уместно вспомнить о тубулин- кинезиновом хемо-механическом преобразователе - см. лекции по цитологии).
    Существует мнение (наиболее распространенное), что поступающие в цитоплазму эпителиоцитов белки расщепляются в цитоплазме под влиянием лизосомальных протеолитических ферментов до аминокислот, которые затем транспортируются в кровь перитубулярных капилляров. По всей видимости, все же не все белки расщепляются до аминокислот - часть их (возможно, большая) переносится в неизмененном состоянии - ведь количество пиноцитозных структур на базальном полюсе клеток почти такое же, как и на апикальном.
    Глюкоза (как, впрочем, и некоторые другие моносахариды) всасывается путѐм симпорта (т.е. сопряжѐнного переноса) с ионами Na, поступающими в эпителиальную клетку по градиенту их концентрации через особые каналы. Эти каналы функционируют только при наличии в первичной моче одновременно и Na+, и определенного моносахарида. Другими словами, при отсутствии одного из компонентов (либо Na+, либо глюкозы) данный канал не срабатывает. Напомним, что указанные каналы работают по принципу облегченной диффузии, т.е. в соответствии с градиентом концентрации (в данном случае Na+) и без затрат энергии. Такая работа требует постоянного поддержания низкой внутриклеточной концентрации ионов Na+, а это обеспечивается за счѐт деятельности Na+-насоса (уже энергозависимого) на базальной поверхности эпителиальных клеток.
    Реабсорбируемая вода проходит непосредственно через цитоплазму эпителиальных клеток (а не через промежутки между ними) с помощью водных каналов (так называемых аквапоринов). Работа этих каналов также связана с градиентом напряжения воды в трех взаимосвязанных «отсеках» - просвете канальца, цитоплазме эпителиоцита и крови перитубулярной капиллярной сети.
    В соответствии с функциональным профилем эпителиоцитов общая структура проксимальных извитых канальцев имеет характерный вид. В частности, канальцевый эпителий достигает максимальной высоты среди всех канальцев нефрона, что связано с высокой реабсорбционной активностью. Поверхность клеток покрыта щеточной каемкой, обусловленной протеканием начальных стадий пиноцитоза и необходимостью

    183
    Золина Анна, ТГМА, леч.фак. увеличения контактной поверхности мембран, насыщенных транспортными структурами
    (например, каналами). Цитоплазма клеток насыщена пиноцитозными пузырьками и лизосомами, что отражает активный перенос белков и придает клеткам «пенистый» вид, а всей цитоплазме - выраженную оксифилию. В своей базальной части клетки имеют исчерченность - базальный лабиринт, образованный внутренними складками цитолеммы
    (активный экзоцитоз белков) и расположенными между ними митохондриями
    (энергообеспечение Na+, К+, Са++ и других насосов). В прямой части проксимального канальца, кроме того, в его просвет секретируются некоторые органические продукты - креатинин и др.
    Петля нефрона
    Петля Генле состоит из тонкого канальца и прямого дистального канальца. В коротких и промежуточных нефронах тонкий каналец имеет только нисходящую часть, а в юкстамедуллярных нефронах - также длинную восходящую часть, которая переходит в прямой (толстый) дистальный каналец. Тонкий каналец имеет диаметр около 15 мкм.
    Стенка его образована плоскими эпителиоцитами. Такая морфология связана с функциональными особенностями данного отдела нефрона - здесь происходит пассивная реабсорбция воды. В нисходящих тонких канальцах цитоплазма эпителиоцитов светлая, бедная органеллами и ферментами. Реабсорбция воды реализуется на основе разности осмотического давления между мочой в канальцах и тканевой жидкостью интерстициальной ткани, в которой проходят сосуды мозгового вещества. Деятельность многочисленных водных каналов
    (аквапоринов) обеспечивает интенсивную реабсорбцию воды, которая, впрочем, не требует потребления энергии. Поэтому у клеток нет признаков высокой функциональной активности - щеточной каѐмки, оксифилии цитоплазмы, высокого содержания митохондрий, складчатости базальной плазмолеммы.
    Дистальный извитой каналец
    Здесь происходят два процесса, регулируемые гормонами и называемые поэтому факультативными:
    1) активная реабсорбция оставшихся электролитов и
    2) пассивная реабсорбция воды.
    В частности, работает Na+,К+-канал по принципу - обмен 3 ионов Na+ (внутрь цитоплазмы эпителиоцита) на 2 иона К+ и 1 ион Н+ (из цитоплазмы в мочу).
    Деятельность канала, не требующего энергии, основана на градиенте концентрации Na+; поддержание постоянной низкой концентрации Na+ в цитоплазме обеспечивается работой Na+ ,К +-насосов, активность которых регулируется гормоном альдостероном.
    Важно отметить, что указанные насосы расположены не на базальном полюсе канальцевых эпителиоцитов (как в проксимальных канальцах), а на их боковых поверхностях. При этом из цитоплазмы Na+ откачивается в исключительно узкое интерстициальное пространство между эпителиальными клетками, благодаря чему даже при незначительном количестве молекул Na+ в нем удается достигнуть резкого повышения интерстициального осмотического давления. Под действием этого высокого

    184
    Золина Анна, ТГМА, леч.фак. давления вода реабсорбируется в интерстициальные щели между эпителиоцитами и затем вместе с натриевыми ионами увлекается в перитубулярные гемокапилляры. Данная реабсорбция регулируется антидиуретическим гормоном (АДГ), который понижает полимерность гиалуроновой кислоты в составе гликозаминогликанов интерстиция, тем самым увеличивая его гидрофильность и интенсифицируя глубину реабсорбции воды.
    Соблюдается простая схема: чем больше АДГ, тем меньше мочи и тем выше ее концентрированность.
    Характерная морфология дистального канальца: он выстлан низким цилиндрическим эпителием, клетки которого лишены щеточной каемки, но имеют базальный лабиринт с высоким содержанием митохондрий (для энергообеспечения Na+K+-нacocoв).
    1   ...   19   20   21   22   23   24   25   26   ...   32


    написать администратору сайта