Лекции. Лекция Введение. Общепланетарное значение и функции почв
Скачать 2.04 Mb.
|
Регулирование водного режимаРегулирование водного режима – обязательное мероприятие в районах интенсивного земледелия. При этом осуществляется комплекс приемов, направленных на устранение неблагоприятных условий водоснабжения растений. Искусственно меняя приходные и расходные статьи водного баланса, можно существенно влиять на общие о полезные запасы воды в почвах и этим способствовать получению высоких и устойчивых урожаев сельскохозяйственных культур. Регулирование водного режима основывается на учете климатических и почвенных условий, а также потребностей выращиваемых культур в воде. Для создания оптиманых условий роста и развития растений необходимо стремиться к уравниванию количества влаги, поступающей в почву, с ее расходом на транспирацию и физическое испарение, то есть созданию коэффициента увлажнения, близкого к 1. В конкретных почвенно-климатических условиях способы регулирования водного режима имеют свои особенности. Улучшению водного режима слабодренированных территорий зоны достаточного и избыточного увлажнения способствуют планировка поверхности почвы и нивелировка микро- и мезопонижений, в которых весной и летом может наблюдаться длительбный застой влаги. На почвах с временным избыточным увлажнением для удаления избытка влаги целесообразно с осени делать гребни. Высокие гребни способствуют увеличению физического сипарения, а по бороздам происходит поверхностный сток воды за пределы поля. Почвы болотного типа и минеральные заболоченные нуждаются в осушительных мелиорациях – устройстве закрытого дренажа или отводе избыточной влаги с помощью открытой сети. Регулирование водного режима почв во влажной зоне с большим количеством годовых осадков не ограничивается осушительной направленностью. В ряде случаев даже на дерново-подзолистых почвах летом возникает недостаток влаги и потребность в дополнительном количестве воды. Ффективное средство улучшения влагообеспеченности растений в Нечерноземной зоне – двустороннее регулирование влаги, когда избыток влаги отводится с полей по дренажным трубам, а при необходимости подается на поля по тем же трубам или дождеванием. Все приемы окультуривания почвы (создание глубокого пахотного слоя, улучшение структурного состояния, увеличение общей пористости, рыхление подпахотного горизонта…) повышают ее влагоемкость и способствуют накоплению и сохранению продуктивных запасов влаги в корнеобитаемом слое. В зоне неустойчивого увлажнения и засушливых районах регулирование водного режима направлено на максимальное накопление влаги в почве и на рациональное ее использование. Один из наиболее распространенных способов – влагозадержание снега и талых вод. Для этого используют стерню, кулисные растения, валы из снега… Для уменьшения поверхностного стока воды применяют зяблевую вспашку поперек склонов, обваловывание, прерывистое бороздование, щелевание, полосное размещение культур, ячеистую обработку почвы и др. Исключительная роль в накоплении почвенной влаги принадлежит полезащитным лесным полосам. Предохраняя снег от сдувания в зимнее время, они способствуют увеличению запасов влаги в метровом слое почвы к началу вегетационного периода на 50-80 мм и до 120 мм в отдельные годы. Под влиянием лесных полос сокращается непродуктивное итспарение влаги с поверхности почвы, что также улучшает водообеспеченность полей. Наиболее эффективны ажурные и продувные лесные полосы. Большое значение в улучшении водного режима почв имеет введение чистых паров, особенно черных. Наибольшмий эффект чистого пара как агротехнического приема накопления влаги, проявляется в степной зоне и южной лесостепи. Накоплению и сохранению влаги в почве способствуют многие агротехнические приемы. Поверхностное рыхление почвы весной или закрытие влаги боронованием позволяет избежать ненужных потерь ее в результате физического сипарения. Послепосевное прикатывание почвы изменяет плотность поверхностного слоя пахотного горизонта по сравнению с остальной его массой. Создавшаяся разность плотностей почвы вызывает капиллярный подток влаги из нижележащиего слоя и способствует конденсации водяных паров почвенного воздуха. В сочетании с увеличением контакта семян с почвенными частицами, все явления, связанные с прикатыванием, усиливают прорастание семян и обеспечивают потребность растений в воде ранней весной. Применнение органических и минеральных удобрений способствует более экономному расходованию почвенной влаги. В овощеводстве для сохранения влаги широко используют мульчирующие материалы. В пустынной и полупустынной зонах основной способ улучшения водного режима – орошение. Очень важным вопросом здесь является борьба с непродуктивным расходованием почвенной влаги в целях предотвращения вторичного засоления. Состав почвенного воздуха и воздушные свойства почв. Почвенный воздух – это смесь газов и летучих органических соединений, заполняющий поры почвы, свободные от воды. Главным источником почвенного воздуха является атмосферный воздух и газы, образующиеся в самой почве. Попадая в почву, атмосферный воздух претерпевает значительные изменения. Поэтому состав почвенного воздуха отличается от атмосферного воздуха (Табл.5.1.1). Таблица 5.1.1. Состав атмосферного и почвенного воздуха, %.
Состав атмосферного воздуха достаточно постоянен, и содержание его основных компонентов практически не меняется. Почвенный воздух отличается значительной динамичностью. Изменение состава почвенного воздуха происходит вследствие процессов жизнедеятельности организмов, дыхания корней растений и почвенной фауны, в результате окисления органического вещества. Трансформация атмосферного воздуха в почве тем интенсивнее, чем выше ее энергетический потенциал и биологическая активность, а также зависит от сложности удаления газов из почвенного профиля. Зависимость интенсивности поглощения кислорода почвой из атмосферы выражается следующей формулой (В.Д.Федоров, Т.Г.Гильманов, 1980): SO2 = F (CO2, TS, W, RS, FS, MS, NS…), где СO2 – концентрация кислорода в почвенном воздухе; TS – температура почвы, W - влажность почвы; RS - количество корней в почве; FS - дыхание почвенных животных; MS - активность почвенных микроорганизмов; NS - содержание органического вещества. В зависимости от количественного содержания, в почвах различают макрогазы и микрогазы. К макрогазам относятся азот, кислород, диоксид углерода, к микрогазам – СО, N2О, NО2, предельные и непредельные углеводороды, водород, сероводород, аммиакэфиры, пары органических и неорганических кислот и другие. Из всех газов почвенного воздуха наиболее динамичны кислород и углекислый газ. Это объясняется непрерывным поступление кислорода, необходимого для дыхания почвенной фауны и флоры и образованием углекислоты как следствие процессов окисления органического вещества почвы и активной жизнедеятельности почвенных организмов. В почвенном воздухе содержание СО2 может доходить до 4-6%, содержание О2 не превышать 15%, содержание азота мало отличается от атмосферного, при этом в почве обнаруживается характерный продукт денитрификации – закись азота (NО3). Состав почвенного воздуха различен для различных почвенных горизонтов, различных типов почв и изменяется по сезонам года в связи с колебаниями влажности почвы, разложением животных и растительных остатков, внесением органических удобрений. Процесс поглощения воздуха почвой зависит от ее морфологических особенностей, содержания органических веществ, минералов монтмориллонитовой группы, а также соединений, обладающих большой поглотительной способностью в отношении газов, от давления и температуры воздуха. Воздушно-физические свойства почв характеризуются рядом показателей, главными из которых являются воздухопроницаемость и воздухоемкость. Воздухоемкость – это максимально возможное количество воздуха, которое может содержаться в воздушно-сухой почве. Выражается в объемных процентах. Величина воздухоемкости приближается к пористости сухих почв, исключая объема, занятого гигроскопической водой и поглощенным воздухом. Она имеет наибольшие показатели в сухих структурных рыхлых почвах, а также в почвах легкого гранулометрического состава. Существует капиллярная и некапиллярная воздухоемкость. Капиллярная воздухоемкость – это способность почвы в сухом состоянии поглощать и удерживать воздух в капиллярных порах малого диаметра. Чем выше капиллярная воздухоемкость, тем меньше подвижность воздуха и сложнее газообмен между почвой и атмосферой. Некапиллярная воздухоемкость - это способность почвы при капиллярном насыщении водой содержать определенный объем свободного воздуха. Некапиллярная водухоемкость прямо пропорциональна некапиллярной скважности почвы. Соотношение капиллярной и некапиллярной воздухоемкости является важным показателем воздушно-физических свойств почвы. Структурные почвы всегда имеют определенную величину некапиллярной скважности, которая свободна от воды и заполнена воздухом даже при большой влажности почвы. Это обеспечивает определенную степень проветриванности почвы. Воздухопроницаемость – это способность почвы пропускать в единицу времени через единицу объема определенное количество воздуха. Водопроницаемость является необходимым условием для осуществления газообмена между почвой и атмосферой. Передвижение воздуха в почве происходит по порам, соединенным друг с другом и не заполненных водой. Чем крупнее поры аэрации, тем лучше выражена воздухопроницаемость почв как в сухом, так и во влажном состоянии. Водопроницаемость структурных рыхлых почв значительно выше, чем плотных бесструктурных глинистых почв, она максимальна в сухих почвах и быстро снижается при увлажнении. Свойства почв определяющие процессы обмена почвенного воздуха с атмосферным, называется газообменом или аэрацией. Газообмен осуществляется через систему почвенных пор, сообщающихся между собой и атмосферой. Аэрация почв – это величина фактического содержания воздуха в почве, выраженная в объемных процентах. Величина аэрации характеризует разность между общей скважностью и влажностью почвы. Чем выше влажность, тем меньше аэрация, так как большая часть объема почвы занята влагой. Максимальная степень аэрации характерна при воздушно-сухом состоянии почв, минимальная – при избыточном увлажнении почв вследствие близкого залегания грунтовых вод, поверхностном заболачивании или затоплении, а также в условиях водоносных горизонтов. Основными факторами газообмена в почве являются: атмосферные условия, к которым относятся амплитуды колебания температур воздуха (суточные и годовые), амплитуды колебаний атмосферного давления (суточные и годовые), температурные градиенты на поверхности раздела почва - атмосфера, движение атмосферного воздуха, осадки и характер их распределения, характер испарения и транспирации. физические свойства почвы, к которым относится гранулометрический состав, структура, состояние поверхности, плотность, пористость, температурный режим, влажность почвы, физические свойства газов, к которым относятся скорость диффузии, градиенты концентраций газов в почвенном профиле и на границе раздела сред, их гравитационный перенос под действием силы тяжести, способность к сорбции – десорбции на твердой фазе почвы, растворение в почвенных растворах и дегазация. физико-химические реакции в почвах, к которым относятся обменные реакции между ППК – почвенным раствором – газовой фазой, а также окислительно-восстановительные реакции. Основным механизмом переноса газов является диффузия. Диффузия – это процесс перемещения газов, связанный с их различной концентрацией в почве и атмосфере (градиентом концентрации). В почвенном воздухе концентрация кислорода всегда меньше, а углекислого газа больше, чем в атмосфере. Поэтому под влиянием диффузии создаются условия для поступления в почву кислорода и выделения в атмосферу углекислого газа. Поток газообразного вещества (QS), протекающего через единицу площади почвенной среды за единицу времени, рассчитывается уравнением молекулярной диффузии (первый закон Фике): где DS – коэффициент диффузии газа в почве, см2 · с; с- концентрация газа в почвенном воздухе, мг/см3; z –глубина слоя, см. Остальные факторы в большей или меньшей степени связаны с диффузией: они изменяют градиенты концентрации газов или изменяют свойства среды, через которую идет диффузия. Формы почвенного воздуха. Почвенный воздух находится в почве в трех состояниях: собственно почвенный воздух (свободный и защемленный), адсорбированный и растворенный. Свободный почвенный воздух – это смесь газов и летучих органических соединений, размещается в капиллярных и некапиллярных почвенных порах. Он обладает большой подвижностью и способен свободно перемещаться в почве и активно обмениваться с атмосферой. Защемленный почвенный воздух – воздух, который находится в порах, со всех сторон изолированных водными пробками. Максимальное количество защемленного воздуха имеют тонкодисперсные уплотненные почвы. Этот воздух неподвижен и практически не участвует в газообмене между почвой и атмосферой. Он препятствует фильтрации воды, может вызывать разрушение почвенной структуры. Растворенный почвенный воздух – это газы, растворенные в почвенной воде. Взаимоотношение жидкой и газообразной фаз почвы определяется режимом температуры и давления, а также концентрацией газов в свободном почвенном воздухе. Количество растворенных газов подчиняется закону фазового равновесия Генри: где С – массовая концентрация газа, растворенного в воде, мг/л, λ – коэффициент растворимости газа в воде, мг/л, р – парциальное давление газа в почвенном воздухе, МПа, 10,2 – нормальное атмосферное давление, МПа. Повышение давления повышает растворимость газов, понижение давления способствует переходу газов из почвенного раствора в почвенный воздух. Увеличение концентрации того или иного газа в составе почвенного воздуха вызывает увеличение этого газа в почвенном растворе. Понижение температуры почвы приводит к повышению растворимости всех почвенных газов. Хорошо растворяются в воде аммиак, сероводород, углекислый газ, растворимость кислорода небольшая. Растворенные газы проявляют высокую активность. С насыщением почвенного раствора СО2 повышается растворимость карбонатов, гипса, других соединений. Растворенный кислород поддерживает окислительные свойства почвенного раствора. С повышением температуры окислительные процессы ослабевают и происходит выпадение из растворов карбонатов. Растворенные газы играют большую роль в обеспечении физиологических потребностей почвенной флоры и фауны. Адсорбированный почвенный воздух – это газы и летучие органические соединения, сорбированные поверхностью твердой фазы почвы. Чем выше степень дисперсности почвы, тем больше сорбированных газов при данной температуре она содержит. Количество сорбированного воздуха зависит от минералогического состава почв, их влажности и количества органических веществ. Адсорбция газов сильнее проявляется в почвах тяжелого гранулометрического состава, богатых органическим веществом. Наибольшее количество адсорбированного воздуха характерно для сухих почв, активнее поглощающих воду, чем газы. Количество адсорбированных газовых компонентов (Г) можно рассчитать при промощи уравнения изотермы адсорбции Ленгмюра: где: Г∞ - предельное значение адсорбции насыщения на единицу поверхности адсорбента, мг, С – равновесная концентрация газа в системе, мг/л, K – эмпирический коэффициент. Газы сорбируются в зависимости от строения их молекул и дипольного момента. Хуже всех сорбируется N2, лучшими сорбционными способностями обладает кислород и углекислый газ, самая высокая сорбция – у NH3. Лекция 9. Поглотительная способность почв Способность почвы поглощать ионы и молекулы различных веществ из растворов и удерживать их называется поглотительной способностью почвы. Большой вклад в изучение поглотительной способности почвы внес К. К. Гедройц. В его трудах исследование поглотительной способности почв тесно увязано с многочисленными теоретическими и практическими вопросами применения удобрений, питания растений, химической мелиорации почв и т. д. К. К. Гедройц выделил пять видов поглотительной способности почв: механическую, физическую, химическую, физико-химическую, или обменную, и биологическую. |