МДК 03.01. Лекция Введение
Скачать 1.66 Mb.
|
Принципы организации хранилищаПроблемно-предметная ориентация. Данные объединяются в категории и хранятся в соответствии с областями, которые они описывают, а не с приложениями, которые они используют. Интегрированность. Данные объединены так, чтобы они удовлетворяли всем требованиям предприятия в целом, а не единственной функции бизнеса. Некорректируемость. Данные в хранилище данных не создаются: т.е. поступают из внешних источников, не корректируются и не удаляются. Зависимость от времени. Данные в хранилище точны и корректны только в том случае, когда они привязаны к некоторому промежутку или моменту времени. Дизайн хранилищ данныхСуществуют два архитектурных направления – нормализованные хранилища данных и хранилища с измерениями. В нормализованных хранилищах, данные находятся в предметно ориентированных таблицах третьей нормальной формы. Нормализованные хранилища характеризуются как простые в создании и управлении, недостатки нормализованных хранилищ – большое количество таблиц как следствие нормализации, из-за чего для получения какой-либо информации нужно делать выборку из многих таблиц одновременно, что приводит к ухудшению производительности системы. Для решения этой проблемы используются денормализованные таблицы - витрины данных, на основе которых уже выводятся отчетные формы. При громадных объемах данных могут использовать несколько уровней «витрин»/«хранилищ». Хранилища с измерениями используют схему «звезда» или схему «снежинка». При этом в центре «звезды» находятся данные (Таблица фактов), а измерения образуют лучи звезды. Различные таблицы фактов совместно используют таблицы измерений, что значительно облегчает операции объединения данных из нескольких предметных таблиц фактов (Пример – факты продаж и поставок товара). Таблицы данных и соответствующие измерениями образуют архитектуру «шина». Измерения часто создаются в третьей нормальной форме, в том числе, для протоколирования изменения в измерениях. Основным достоинством хранилищ с измерениями является простота и понятность для разработчиков и пользователей, также, благодаря более эффективному хранению данных и формализованным измерениям, облегчается и ускоряется доступ к данным, особенно при сложных анализах. Основным недостатком является более сложные процедуры подготовки и загрузки данных, а также управление и изменение измерений данных. При достаточно большом объеме данных схемы «звезда» и «снежинка» также дают снижение производительности при соединениях с измерениями. Процессы работы с даннымиИсточниками данных могут быть: Традиционные системы регистрации операций Отдельные документы Наборы данных Операции с данными: Извлечение – перемещение информации от источников данных в отдельную БД, приведение их к единому формату. Преобразование – подготовка информации к хранению в оптимальной форме для реализации запроса, необходимого для принятия решений. Загрузка – помещение данных в хранилище, производится атомарно, путем добавления новых фактов или корректировкой существующих. Анализ – OLAP, Data Mining, сводные отчёты. Представление результатов анализа. Вся эта информация используется в словаре метаданных. В словарь метаданных автоматически включаются словари источников данных. Здесь же описаны форматы данных для их последующего согласования, периодичность пополнения данных, согласованность во времени. Задача словаря метаданных состоит в том, чтобы освободить разработчика от необходимости стандартизировать источники данных. Создание хранилищ данных не должно противоречить действующим системам сбора и обработки информации. Специальные компоненты словарей должны обеспечивать своевременное извлечение данных из них и обеспечить преобразование данных к единому формату на основе словаря метаданных. Логическая структура данных хранилища данных существенно отличается от структуры данных источников данных. Для разработки эффективного процесса преобразования необходима хорошо проработанная модель корпоративных данных и модель технологии принятия решений. Данные для пользователя удобно представлять в многоразмерных БД, где в качестве измерений могут выступать время, цена или географический регион. Кроме извлечения данных из БД, для принятия решений важен процесс извлечения знаний, в соответствии с информационными потребностями пользователя. С точки зрения пользователя в процессе извлечения знаний из БД должны решаться следующие преобразования: данные → информация → знания → полученные решения. Лекция 21. Понятие баз данных. Систе́ма управле́ния ба́зами да́нных (СУБД) — совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных[1]. |