физические основы лучевой терапии. Лучевая терапия является одним из ведущих методов лечения больных со злокачественными новообразованиями, некоторыми системными и неопухолевыми заболеваниями
Скачать 80.67 Kb.
|
II. ДОЗИМЕТРИЯ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ Основные радиационные величины и их единицы Обязательным условием радиационной безопасности при лучевой терапии является точный количественный учет энергии излучения, поглощенной персоналом и больными, подвергающимися облучению. Для количественной характеристики ИИ пользуются понятием "доза". Доза ИИ - это отношение энергии излучения к массе или объему облучаемого вещества. В клинической дозиметрии пользуются следующими понятиями: Активность радиоактивного вещества - характеристика количества радиоактивного вещества (количество распадов в единицу времени). Системной единицей активности является Беккерель (Бк) - активность радиоактивного источника, в котором в 1 секунду происходит 1 распад (1 Бк = 1 расп./с). Внесистемная единица - Кюри (Ки) - активность радиоактивного источника, в котором в 1 секунду происходит 3,7 1010 распадов. Таблица 1 Основные радиационные величины и их единицы
Поскольку 1 Гр, по определению, есть 1 Джоуль на килограмм, единица СИ интегральной дозы грейкилограмм преобразуется в Джоуль (1 Гркг = 1 (Дж/кг)кг = 1 Дж). Экспозиционная доза излучения - доза излучения, которая измеряется в сухом (свободном) воздухе при отсутствии рассеивающих тел. Она характеризует главным образом источник излучения (его мощность, постоянство параметров и др.). Экспозиционная доза применяется только для ионизирующего излучения с энергией не больше 3 МэкВ. Внесистемной единицей экспозиционной дозы является Рентген - это доза рентгеновского или -излучения, которая при нормальных условиях (00С и давлении 1 атмосфера) в 1 см3 воздуха образует заряд, равный 1 э. с. е. статического электричества (2,08 х 109 пар ионов каждого знака). Единицей измерения экспозиционной дозы в СИ является кулон на кг - это доза рентгеновского или -излучения, при которой в 1 кг воздуха при нормальных условиях образуется заряд, равный 1 кулону. Одну и ту же дозу можно подвести в разные промежутки времени. Поэтому вводится понятие мощности дозы - доза, рассчитанная на единицу времени. Биологическое действие ионизирующих излучений зависит и от дозы и от ее мощности. Поглощенная доза излучения - основной количественный показатель воздействия ионизирующих излучений на облучаемые ткани. Она определяется количеством энергии, переданной в процессе облучения единице массы облучаемого вещества. Поглощенная доза применяется для любого вида ионизирующего излучения. В СИ единица поглощенной дозы - Дж/кг. Эта величина получила название "Грей" (Гр). 1 Гр - это доза ионизирующего излучения, при которой в 1 кг облученного вещества поглотится энергия, равная 1 Дж. Внесистемная единица поглощенной дозы - рад. 1 рад - это доза излучения, при которой в 1 г облученного вещества поглотится энергия, равная 100 эргам. Интегральная доза излучения - количество энергии, поглощенной в облучаемом объеме. В связи с тем, что при облучении биологических объектов различные виды ионизирующих излучений при одной и той же поглощенной дозе оказывают различное биологическое действие, существует понятие "эквивалентная доза излучения". Биологические эффекты, вызываемые конкретным видом излучения, сравнивают с эффектом, который производит фотонное излучение с энергией 200 кэВ. Коэффициент, показывающий, во сколько раз радиационная опасность в случае хронического облучения человека (в малых дозах) для данного вида излучения выше, чем в случае фотонного излучения (200 кэВ при равной поглощенной дозе), называется коэффициентом качества (КК). КК для фотонного излучения 200 кэВ = 1. Для α-частиц КК = 20, для протонов и быстрых нейтронов КК = 10, для тепловых нейтронов КК = 2,5-3. Величина КК зависит от ЛПЭ данного вида излучения. Чем выше ЛПЭ, тем больше поражаемость клеток и ниже способность к восстановлению. Таким образом, при одинаковой поглощенной дозе повреждающий (или лечебный) эффект при облучении протонами будет в 10 раз больше, чем при фотонном излучении. Доза, полученная живым объектом с учетом КК данного излучения, называется эквивалентной дозой. Эквивалентная доза учитывает поглощенную дозу и биологический эффект ИИ. Понятие "эквивалентная доза" используется только для оценки радиационной опасности. Внесистемной единицей эквивалентной дозы является БЭР - это доза какого-либо вида ИИ, биологически эффективная 1 Рентгену рентгеновского излучения, генерируемого напряжением 200 кВ. В настоящее время рекомендуется во всех случаях пользоваться физическими величинами, выраженными в единицах СИ. Однако в медицинской радиотерапевтической технике долгое время применяли внесистемные единицы, что широко отражено в соответствующей литературе, инструкциях, шкалах приборов (в т. ч. дозиметрах). Поэтому необходимо знание соотношений между внесистемными единицами и единицами СИ (табл. 1). Методы дозиметрии ионизирующих излучений ИИ не обладают запахом, вкусом или какими-либо другими свойствами, позволяющими человеку регистрировать их. Для измерения количественных и качественных характеристик ИИ используются различные методы, основанные на регистрации эффектов взаимодействия излучения с веществом. Дозиметры - это приборы, предназначенные для измерения дозы или мощности дозы ИИ. В основе этих приборов лежат регистрация и количественная оценка ионизационного, сцинтилляционного, фотографического, химического и других эффектов, возникающих при взаимодействии ИИ с веществом. Основные группы дозиметров: Клинические - для измерения ИИ в рабочем пучке. Используют при подготовке к лучевой терапии и в процессе облучения. Дозиметры контроля защиты - для измерения мощности дозы рассеянного излучения на рабочих местах (в системе радиационной безопасности). Эти дозиметры должны быть прямопоказывающими. Индивидуальные - для контроля облучения лиц, работающих в сфере действия ИИ. Методы дозиметрии: Биологические - основаны на оценке реакций, которые возникают в тканях при облучении их определенной дозой ИИ (эритемная доза, эпиляционная доза, летальная доза). Являются ориентировочными и применяются в основном в экспериментальной радиобиологии. Химические - заключаются в регистрации необратимых химических реакций, происходящих в некоторых веществах под влиянием облучений (радиохимический метод, фотографический метод). Р адиохимический метод - основан на реакции окисления двухвалентного железа в трехвалентное под действием ИИ (Fe2+ Fe3+), что приводит к изменению окраски (прозрачности). Используются ферросульфатные дозиметры. Так как диапазон этих дозиметров очень велик (от 20 до 400 Гр), они используются только для аварийных ситуаций. Фотографический метод - под действием ИИ происходит почернение рентгеновской пленки, степень которого пропорциональна поглощенной энергии лучей. По плотности почернения можно судить о дозе облучения. Недостатком этого метода является зависимость показаний дозиметра от качественного состава излучения. Точность определения дозы невысока. С помощью фотопленочных дозиметров удобно определять соответствие светового и радиационного поля на аппаратах для лучевой терапии. Физические - основаны на способности ИИ вызывать ионизацию вещества и превращать электрически нейтральный газ в электропроводящую среду (ионизационная камера, газоразрядный счетчик, сцинтилляционный дозиметр, термолюминесцентный дозиметр, полупроводниковые детекторы). Сцинтилляционные дозиметры. Используются кристаллы йодистого натрия, активированные таллием. При попадании на них ИИ возникают световые вспышки, которые преобразуются в электрические импульсы, усиливаются и регистрируются счетными устройствами. Сцинтилляционные дозиметры не применяются в клинической дозиметрии из-за своего большого объема и высокой чувствительности, что позволяет рекомендовать их использование в дозиметрии защиты. Термолюминесцентные дозиметры (ТЛД). Некоторые твердые кристаллические вещества под действием ИИ способны люминесцировать. По интенсивности свечения определяется доза. ТЛД невелики в объеме, являются непрямопоказывающими (доза накапливается в течение какого-то времени). Широко используются в клинической дозиметрии (измерение дозы на больном, в полости тела) и в качестве индивидуальных дозиметров. И онизационная камера - это конденсатор. Состоит из двух электродов, пространство между которыми заполнено воздухом. Под действием ИИ воздух ионизируется, возникает электрический ток. По величине силы тока судим о дозе. Дозиметры, основанные на ионизационном методе, в настоящее время наиболее распространены. Широко применяются в клинической дозиметрии, в дозиметрии защиты и индивидуальной дозиметрии. Газоразрядный счетчик. Также используется ионизационный эффект излучения. Но к электродам газоразрядного счетчика подводят значительно большее напряжение. Поэтому электроны, образующиеся в счетчике при облучении, приобретают большую энергию и сами вызывают массовую ионизацию атомов и молекул газа. Это позволяет регистрировать с помощью газоразрядных счетчиков очень малые дозы ИИ. Полупроводниковые (кристаллические) дозиметры. Меняют проводимость в зависимости от мощности дозы. Широко используются наряду с ионизационными дозиметрами. III. МЕТОДЫ ЛУЧЕВОЙ ТЕРАПИИ. ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЛУЧЕВОЙ ТЕРАПИИ Для облучения опухоли в необходимой дозе при максимально возможном щажении здоровых тканей организма, особенно тех органов, которые отличаются повышенной радиочувствительностью, разработаны в зависимости от локализации и размеров патологического очага различные технические приемы и методы лучевой терапии. По расположению источника излучения относительно патологического очага от поверхности тела различают 2 основные группы способов облучения: Методы дистанционного облучения Методы контактного облучения. Методы дистанционной лучевой терапии Дистанционной ЛТ называется лечение, в процессе которого источник излучения находится на расстоянии от 3-5 см до 1 м от поверхности тела пациента. Методы дистанционной ЛТ определяются видом и качеством ИИ: Рентгенотерапия ЛТ тормозным рентгеновским излучением высокой энергии -терапия -терапия Облучение протонами Облучение нейтронами. Рентгенотерапия. Используется рентгеновское излучение низких и средних энергий (40-200 кВ). Источником излучения является рентгеновская (вакуумная) трубка, находящаяся в рентгеновском аппарате (РУМ-17, РУМ-7, РУМ-21). Рентгеновское излучение - это электромагнитные волны (т. е. излучение испускается отдельными порциями - фотонами). Чем меньше длина волны, тем больше энергия фотона. Спектр рентгеновского излучения сплошной, т. е. в пучке энергия фотонов варьирует от нулевой до максимальной. Для того чтобы пучок рентгеновского излучения состоял из коротких волн (больших энергий), необходимо использовать фильтры, которые отфильтровывают длинноволновое излучение больших энергий. Фильтры - пластинки из металла, изготовленные из алюминия (Al), меди (Cu) или Al+Cu, Al+Cu+олово. Качество рентгеновского излучения определяется напряжением на трубке. Рентгеновское излучение, которое генерируется с помощью аппаратов для рентгенотерапии, всегда создает максимум поглощенной дозы на поверхности (коже). Величина дозы быстро падает с глубиной. Толерантная доза кожи к рентгеновскому излучению небольшая (30-35 Гр). Большой вклад рассеянного излучения. Небольшая проникающая способность. Все это не позволяет широко использовать рентгенотерапию для лечения злокачественных опухолей. Рентгенотерапия применяется для лечения поверхностных новообразований кожи и слизистых оболочек и для лечения неопухолевых заболеваний. Облучение тормозным рентгеновским излучением высокой энергии (25 МэВ). Источниками этого излучения являются линейные ускорители электронов (ЛУЭ), синхротрон, бетатрон. Максимум поглощенной дозы находится глубоко в тканях (на расстоянии 3-5 см от облучаемой поверхности в зависимости от энергии излучения). Используется для облучения глубоко расположенных опухолей (рак пищевода, центральной нервной системы, мочевого пузыря, легкого и др.) Облучение быстрыми электронами - -терапия (20-30 МэВ). Источники электронов - ЛУЭ, бетатрон, микротрон. Максимум поглощенной дозы находится на глубине эффективного пробега электронов (эффективный пробег равен 1/3 максимальной энергии), т. е. 7-10 см от облучаемой поверхности тела. Величина дозы быстро падает с глубиной. В основном используется для повторной ЛТ или для лечения опухолей, расположенных рядом с критическими органами. -терапия. В качестве источника излучения используется радионуклид (до недавнего времени - цезий 137, в настоящее время - кобальт 60). Требования к радионуклидам для -аппаратов: Физический период полураспада должен быть большим: цезий 137 - 33 года; кобальт 60 - 5,3 года. Энергия -лучей должна быть достаточной (1 МэВ и более): энергия -лучей цезия - 0,66-0,75 МэВ; энергия -лучей кобальта - 1,17-1,33 МэВ. Должна быть сравнительно высокая удельная активность препарата (активность радионуклида в единице объема). Чем больше удельная активность, тем меньше размеры источника излучения. Так как удельная активность кобальта больше, чем у цезия, его удобнее использовать в клинике (в настоящее время размеры таблетки кобальта составляют 1,6 1,6 см). В нашей стране выпускаются следующие аппараты для -терапии: "ЛУЧ-1", "Рокус-М" (ротационно-конвергентная установка), "АГАТ-С" (статический), "АГАТ-Р" (ротационный), "АГАТ-В" (внутриполостной). Более современными являются "АГАТ-Р1" и "АГАТ-Р2". Их особенности: наличие центраторов для более точного подведения дозы к опухоли; выход на ЭВМ и способность работать в автоматическом режиме; в большом ассортименте представлены формирующие приспособления и др. Максимум поглощенной дозы при -терапии находится прямо под поверхностными слоями кожи, в дальнейшем величина дозы довольно быстро падает (1 см мягких тканей ослабляет -лучи кобальта на 5%). Показания для дистанционной -терапии: Для лечения с радикальной, паллиативной и симптоматической целью опухолей внутренних органов. Может быть использована для облучения поверхностных опухолей (тангенциальное облучение). Для лечения неопухолевых заболеваний. Облучение протонами. Это тяжелые заряженные частицы, которые ускоряются с помощью цикло- и синхроциклотрона. Энергия излучения - от 160 до 1000 МэВ. В отличие от фотонных ИИ при облучении протонами максимум ионизации (максимум поглощенной дозы) находится в конце пробега частиц (пик Брегга). Облучение протонами применяется для ЛТ внутричерепных образований небольшого размера, а также для лечения радиорезистентных опухолей с малым диаметром. С помощью протонных пучков удается одномоментно облучать строго ограниченные объемы тканей дозами 100-200 Гр. Облучение нейтронами. Проводится в 31 центре в мире, где есть генераторы нейтронов. Применяется для ЛТ радиорезистентных опухолей, саркомы костей, мягких тканей. Терапевтический эффект достигается только ценой лучевых повреждений. Дистанционная ЛТ может осуществляться в статическом и подвижном режимах. При статическом облучении источник излучения неподвижно зафиксирован по отношению к пациенту. Для изменения поля действия пучка излучения используются экранирующие блоки и решетки из свинца. При подвижном способе облучения источник излучения двигается по дуге относительно тела больного. Различают: круговое облучение (угол вращения 3600); маятниковое, или секторное, облучение (угол качания меньше 3600). Показаниями для этих видов подвижного облучения являются небольшие опухоли, расположенные в области центральной и сагиттальной плоскости тела больного (т. е. глубоко расположенные). К ним относятся опухоли головы и шеи, бронхопульмональные лимфатические узлы, опухоли пищевода, прямой кишки, мочевого пузыря и др. Эксцентрическое (шалевидное) облучение - радиус качания составляет с центральным лучом определенный угол отклонения. Применяется, например, при лечении метастатических очагов в ребрах, при облучении селезенки, т. е. органов, расположенных близко к поверхности тела больного. |