Главная страница

Вопросы к экзамену по микробиологии. Медицинская микробиология. Предмет, задачи, методы, связь с другими науками


Скачать 1.02 Mb.
НазваниеМедицинская микробиология. Предмет, задачи, методы, связь с другими науками
АнкорВопросы к экзамену по микробиологии.docx
Дата26.12.2017
Размер1.02 Mb.
Формат файлаdocx
Имя файлаВопросы к экзамену по микробиологии.docx
ТипДокументы
#13043
страница1 из 21
  1   2   3   4   5   6   7   8   9   ...   21

  1. Медицинская микробиология. Предмет, задачи, методы, связь с другими науками. Значение медицинской микробиологии в практической деятельности врача.

Микробиология – наука, изучающая микроскопические существа, названные микроорганизмами, их биологические признаки, систематику, экологию, взаимоотношения с другими организмами, населяющими нашу планету – животными, растениями, человеком.

Предметом изучения частной микробиологии являются отдельные представители микромира в зависимости от проявления и влияния их на окружающую среду, живую природу, в том числе человека. К частным разделам микробиологии относятся: медицинская, ветеринарная, сельскохозяйственная, техническая (раздел биотехнологии), морская, космическая микробиология.

Задачи МБ: Изучение структуры и биологических свойств микробов; Изучение взаимоотношений микробов с организмом человека (патогенез), а такде их диагностика, профилактика и лечение.

Методы МБ:

Микроскопический – патологический материал – мазок – микроскопия

Культурологический – Патологический материал – выделение чистой культуры – идентификация (опр. Вида)

Экспериментальный: патматериал – заражение лабораторных животных - рассмотр восприимчивости, патогенеза, обнаружение токсинов, получение чистой культутры.

Связь с другими науками: По своей сути микробиология является биологической фундаментальной наукой. Для изучения микроорганизмов она использует методы других наук, прежде всего физики, биологии, биоорганической химии, молекулярной биологии, генетики, цитологии, иммунологии.


2. Основные этапы развития микробиологии и иммунологии. Работы Л.Пастера, Р.Коха и их значение для развития микробиологии и иммунологии. Роль отечественных ученых (Н.Ф. Гамалея, П.Ф. Здродовский, Д.И. Ивановский, А.А. Смородинцев, М.П. Чумаков, З.В. Ермольева, В.М. Жданов и др.) в развитии микробиологии и вирусологии.

Основные этапы развития микробиологии и имунологии.

описательный период

  • Конец 17-сер.19в.;

  • Открытие мира микроорганизмов, описание их внешнего вида;

  • А.Левенгук – открытие микроорганизмов.

Физиологический (пастеровский) период

  • Сер. 19 – начало 20 века;

  • Изучается жизнедеятельность микробной клетки, открытие болезнетворных бактерий

  • Левенгук

  • Кох

Открытие Л.Пастера

  • Бактериальная природа брожения

  • Установление причин болезней вина и пива

  • Открытие воздушной болезни шелковичных червей

  • Создание первой искуственной вакцины (против сибирской язвы).

  • Вакцинация

30 апреля 1878 – день считается днём рождения медицинской микробиологии.

Заслуги Р.Коха

  • Открытие патогенных микроорганизмов

  • Разработка основных правил идентификации патогенных микробов как этиологических антигенов (триада Генле-Коха)

  • Другие открытия

Иммунологическийц период

  • Начало и серидина 20 века (Илья Мечников – клеточная теория иммунитета; П.Эрлих, А.Флеминг – открытие пеницилина лизоцим, Г.Домак применил сульфаниламиды в медицинской практике, Д.Ивановский)


Современный перид (середина 20 века до сегодняшних дней) А.Львов – открытие провируса, Р.Портер и Дж.Эдельман – структура антител.

  • Бернет – теория иммунитета. Галло и Монтанье – ВИЧ. С.Пруссинер – открытие прионов.

Николай Фёдорович Гамалея  - Создатель интенсивного метода прививки — он разработал и применил на практике план мероприятий по борьбе с эпидемиями на местах. Открыл холероподобный птичийвибрион, представил противохолерную вакцину. В1894-1896 годах Гамалея описал явление так называемого гетероморфизма бактерий. Н. Гамалея впервые выдвинул положение о существовании скрытых форм инфекции.

Павел Феликсович Здродовский  -  Изучал проблему риккетсиозов, разработал методы их профилактики с помощью живых и химических вакцин.

Дмитрий Иосифович Ивановский - Ивановский положил начало вирусологии, выросшей в самостоятельную область науки. Началось все с открытия вируса мозаичной болезни табака. Ивановский занимался также изучением процесса спиртового брожения и влияния на него кислорода, хлорофилла и других пигментов зелёных листьев, участвующих в процессе фотосинтеза.

Анато́лий Алекса́ндрович Сморо́динцев – Создал вакцины против гриппа, клещевого энцефалита, кори, эпидемического паротита.

Михаи́л Петро́вич Чумако́в - основатель и первый директор Института полиомиелита и вирусных энцефалитов РАМН. Принял участие (совместно с Л. А. Зильбером и другими) в изучении этиологии весенне-летнего энцефалита и открытии вызывающего его вируса клещевого энцефалита. Организовал массовое производство, провёл клинические испытания и внедрил вакцину против полиомиелита, разработанную американским учёным Альбертом Сэйбином.

Зинаида Виссарионовна Ермольева - Занималась изучением холеры. Открыла светящийся холероподобный вибрион, носящий её имя. В 1942 году впервые в СССР получила пенициллин (крустозин ВИЭМ), впоследствии активно участвовала в организации его промышленного производства в Советском Союзе. Создатель антибиотиков в СССР.

Виктор Михайлович Жданов - Основные труды по вирусным инфекциям (инфекционному гепатиту и гриппу), эволюции инфекционных болезней, классификации вирусов, по проблемам молекулярной биологии вирусов.. Ликвидировал оспу. Последние годы жизни Виктор Михайлович Жданов посвятил изучению ВИЧ-инфекции, которую считал глобальной проблемой здравоохранения.


3. Микроорганизмы и их положение в системе живого мира. Номенклатура бактерий. Принципы классификации.

Для бактерий рекомендованы следующие таксономические категории: класс, отдел, порядок, семейство, род, вид. Название вида соответствует бинарной номенклатуре, т. е. состоит из двух слов. Например, возбудитель сифилиса пишется как Treponemapallidum. Первое слово — название рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы. При повторном упоминании вида родовое название сокращается до начальной буквы, например: Т. pallidum.

Бактерии относятся к прокариотам, т. е. доядерным организмам, поскольку у них имеется примитивное ядро без оболочки, ядрышка, гистонов, а в цитоплазме отсутствуют высокоорганизованные органеллы (митохондрии, аппарат Гольджи, лизосомы и др.).

Бактерии делят на 2 домена: «Bacteria» и «Archaea».

В домене «Bacteria» можно выделить следующие бактерии:

1) бактерии с тонкой клеточной стенкой, грамотрицательные;

2) бактерии с толстой клеточной стенкой, грамположительные;

3) бактерии без клеточной стенки (класс Mollicutes — микоплазмы)

Архебактерии не содержат пептидогликан в клеточной стенке. Они имеют особые рибосомы и рибосомные РНК (рРНК).

Среди тонкостенных грамотрицательных эубактерий различают:

• сферические формы, или кокки (гонококки, менингококки, вейлонеллы);

• извитые формы — спирохеты и спириллы;

• палочковидные формы, включая риккетсии.

К толстостенным грамположительным эубактериям относят:

• сферические формы, или кокки (стафилококки, стрептококки, пневмококки);

• палочковидные формы, а также актиномицеты (ветвящиеся, нитевидные бактерии), коринебактерии (булавовидные бактерии), микобактерии и бифидобактерии.

Тонкостенные грамотрицательные бактерии: Менингококки, гонококки, Вейлонеллы, Палочки, Вибрионы, Кампилобактерии, Хеликобактерии, Спириллы, Спирохеты, Риккетсии, Хламидии.

Толстостенные грамположительные бактерии: Пневмококки, Стрептококки, Стафилококки, Палочки, Бациллы, Клостридии, Коринебактерии, Микобактерии, Бифидобактерии, Актиномицеты.


4. Структура бактериальной клетки. Основные отличия прокариотов и эукариотов. Функции отдельных структурных элементов бактериальной клетки. Особенности химического состава клеточных стенок грамположительных и грамотрицательных бактерий.

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Отличия по строению клетки

1) У прокариот нет ядра, а у эукариот есть.

2) У прокариот из органоидов имеются только рибосомы (мелкие, 70S), а у эукариот, кроме рибосом (крупных, 80S), имеется множество других органоидов: митохондрии, ЭПС, клеточный центр, и т.д.

3) Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.

1) У прокариот ДНК кольцевая, а у эукариот линейная

2) У прокариот ДНК голая, почти не соединена с белками, а у эукариот ДНК соединена с белками в соотношении 50/50, образуется хромосома

3) У прокариот ДНК лежит в специальной области цитоплазмы, которая называется нуклеоид, а у эукариот ДНК лежит в ядре.

Постоянные компоненты бактериальной клетки.

Нуклеоид – эквивалент ядра прокариот

Клеточная стенка – отличается у Гр+ и Гр – бактерий. Определяет и сохраняет постоянную форму, обеспечивает связь с внешней средой, определяет антигенную специфичность бактерий, обладает важными иммуноспецифическими свойствами; нарушение синтеза клеточной стенки ведет к образованию L-форм бактерий.

Гр+ : такая окраска связана с содержанием в КС тейховыми и дипотейхоевыми кислотами, которые пронизывают его насквозь и закрепляют в цитоплазме. Пептидогликан толстый, состоит плазматической мембраны, связанной бета-гликозидными связями.

Гр -: тонкий слой пептидогликанов, нарудная мембрана представлена липополисахаридными гликокопротеинами, гликолипидами.

ЦПМ – состоит из липопротеинов. Воспринимает всю химическую информацию, поступающую в клетку. Является основным барьером. Участвует процессе репликации нуклеоида и плазмид; содержит большое количество ферментов; Участвует в синтезе компонентов клеточной стенки.

Мезосомы – аналоги митохондрий в бактериальной клетке

Рибосомы 70S - многочисленные мелкие гранулы, располагающиеся в в цитоплазме.

НЕПОСТОЯННЫЕ:

Жгутики: состоят из белка флагеллина, берут начало от ЦПМ, основная функция -двигательная.

Пили: за счет них идет прикрепление к клетке-хозяину

Плазмиды. Капсула, Споры, Включения.

5. Основные методы изучения морфологии бактерий. Бактериоскопический метод. Методы окраски микробов и их отдельных структур. Методы микроскопии (люминесцентная, темнопольная, фазово-контрастная, электронная).

Микроскопический – патологический материал – мазок – микроскопия.

Морфологические свойства бактерий. Бактерии — микроорганизмы, не имеющие оформленного ядра (прокариоты).

Бактерии имеют разнообразную форму и довольно сложную структуру, определяющую многообразие их функциональной деятельности. Для бактерий характерны четыре основные формы: сферическая (шаровидная), цилиндрическая (палочковидная), извитая и нитевидная.

Методы окраски. Окраску мазка производят простыми или сложными методами. Простые заключаются в окраске препарата одним красителем; сложные методы (по Граму, Цилю — Нильсену и др.) включают последовательное использование нескольких красителей и имеют дифференциально-диагностическое значение. Отношение микроорганизмов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений.

При простых методах мазок окрашивают каким-либо одним красителем, используя красители анилинового ряда (основные или кислые). Если красящий ион (хромофор) — катион, то краситель обладает основными свойствами, если хромофор - анион, то краситель имеет кислые свойства. Кислые красители — эритрозин, кислый фуксин, эозин. Основные красители — генциановый фиолетовый, кристаллический фиолетовый, метиленовый синий, основной фуксин. Преимущественно для окраски микроорганизмов используют основные красители, которые более интенсивно связываются кислыми компонентами клетки. Из сухих красителей, продающихся в виде порошков, готовят насыщенные спиртовые растворы, а из них — водно-спиртовые, которые и служат для окрашивания микробных клеток. Микроорганизмы окрашивают, наливая краситель на поверхность мазка на определенное время. Окраску основным фуксином ведут в течение 2 мин, метиленовым синим — 5—7 мин. Затем мазок промывают водой до тех пор, пока стекающие струи воды не станут бесцветными, высушивают осторожным промоканием фильтровальной бумагой и микроскопируют в иммерсионной системе. Если мазок правильно окрашен и промыт, то поле зрения совершенно прозрачно, а клетки интенсивно окрашены.

Сложные методы окраски применяют для изучения структуры клетки и дифференциации микроорганизмов. Окрашенные мазки микроскопируют в иммерсионной системе. Последовательно нанести на препарат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др.

Существуют несколько основных окрасок: по Граму, по Цилю-Нельсону, по Ауески, Нейссера, Бури-Гинса.

Фазово-контрастное устройствоможет быть установлено на любом микроскопе. Фазово-контрастная микроскопия основана на явлении интерференции света, прошедшего и не прошедшего через объект, и позволяет наблюдать прозрачные объекты, отличающиеся от окружающей среды (или других структур клетки) по показателю преломления или по толщине и вызывающие изменение фазы прошедшего через них света. Благодаря специальному приспособлению в объективе (фазовая пластинка) и в конденсоре (кольцевая диафрагма) эти объекты выглядят более темными (позитивный фазовый контраст) или более светлыми (негативный фазовый контраст) по сравнению с окружающей средой.

- Темнопольная микроскопия (ультрамикроскопия) основана на явлении светорассеивания. При темнопольной микроскопии в объектив попадают только лучи, рассеянные объектом, и не попадают прямые лучи от осветителя. Поэтому наблюдаемые микроорганизмы кажутся ярко светящимися на темном фоне. Темнопольную микроскопию применяют для прижизненного изучения лептоспир, спирохет, а также микроорганизмов слишком мелких, чтобы их можно было различить при обычном светлопольном освещении. Для темнопольной микроскопии используют обычные объективы и специальные темнопольные конденсоры.

- Люминесцентная микроскопия основана на использовании явления флюоресценции. Применяют специальные люминесцентные микроскопы или приспособления к обычным микроскопам. Так как большинство микроорганизмов не обладает собственной люминесценцией, то их предварительно окрашивают (флюорохромируют) сильно разведенными растворами специальных красителей (флюорохромы), которые связываются с определенными структурами клетки.

- Электронная микроскопия. Изображение в электронном микроскопе образуется не с помощью световых лучей и стеклянных линз, а с помощью потока электронов, который фокусируется электрическим или магнитным полем. Разрешающая способность примерно в 2000 раз больше, чем светового (0,2 мкм), и с его помощью можно увидеть даже крупные молекулы. Применение электронного микроскопа значительно расширило знания о вирусах, фагах и других микроорганизмах.


6. Рост и размножение бактерий. Фазы размножения.

Жизнедеятельность бактерий характеризуется ростом — формированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размножением — самовоспроизведением, приводящим к увеличению количества бактериальных клеток в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. Грамположительные бактерии делятся путем врастания синтезирующихся перегородок деления внутрь клетки, а грамотрицательные — путем перетяжки, в результате образования гантелевидных фигур, из которых образуются две одинаковые клетки.

Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной нитью), приводящая к удвоению молекул ДНК бактериального ядра — нуклеоида.

Репликация ДНК происходит в три этапа: инициация, элонгация, или рост цепи, и терминация.

Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питательной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и прекращению роста бактерий. Культивирование бактерий в такой системе называют периодическим культивированием, а культуру — периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивирование называется непрерывным, а культура — непрерывной.

При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:

1. лаг-фаза;

2. фаза логарифмического роста;

3. фаза стационарного роста, или максимальной концентрации

бактерий;

4. фаза гибели бактерий.

Эти фазы можно изобразить графически в виде отрезков кривой размножения бактерий, отражающей зависимость логарифма числа живых клеток от времени их культивирования.

Лаг-фаза — период между посевом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4—5 ч. Бактерии при этом увеличиваются в размерах и готовятся к делению; нарастает количество нуклеиновых кислот, белка и других компонентов.

Фаза логарифмического (экспоненциального) роста является периодом интенсивного деления бактерий. Продолжительность ее около 5— 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20—40 мин. Во время этой фазы бактерии наиболее ранимы, что объясняется высокой чувствительностью компонентов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.

Затем наступает фаза стационарного роста, при которой количество жизнеспособных клеток остается без изменений, составляя максимальный уровень (М-концентрация). Ее продолжительность выражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования.

Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бактерий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжительность ее колеблется от 10 ч до нескольких недель. Интенсивность роста и размножения бактерий зависит от многих факторов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.

Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолированные колонии округлой формы с ровными или неровными краями (S- и R-формы), различной консистенции и цвета, зависящего от пигмента бактерий. Пигменты, растворимые в воде, диффундируют в питательную среду и окрашивают её. Другая группа пигментов нерастворима в воде, но растворима в органических растворителях. И, наконец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.

7. Питание бактерий. Типы и механизмы питания бактерий. Аутотрофы и гетеротрофы. Факторы роста. Прототрофы и ауксотрофы.

Типы питания. Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы, использующие для построения своих клеток диоксид углерода С02 и другие неорганические соединения, и гетеротрофы, питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобактерии, живущие в воде с закисным железом, и др.

Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или животных, относят к патогенным и условно-патогенным. Среди патогенных микроорганизмов встречаются облигатные и факультативные паразиты. Облигатные паразиты способны существовать только внутри клетки, например риккетсии, вирусы и некоторые простейшие.

В зависимости от окисляемого субстрата, называемого донором электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров водорода неорганические соединения, называют литотрофны-ми (от греч. lithos — камень), а микроорганизмы, использующие в качестве доноров водорода органические соединения, — органотрофами.

Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые водоросли, использующие энергию света), и хемотрофы, нуждающиеся в химических источниках энергии.

Механизмы питания. Поступление различных веществ в бактериальную клетку зависит от величины и растворимости их молекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая макромолекулы массой более 600 Д. Основным регулятором поступления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения питательных веществ в бактериальную клетку: это простая диффузия, облегченная диффузия, активный транспорт, транслокация групп.

Наиболее простой механизм поступления веществ в клетку — простая диффузия, при которой перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны (органические молекулы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.

Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазматической мембраны. Однако этот процесс осуществляется с помощью молекул-переносчиков, локализующихся в цитоплазматической мембране и обладающих специфичностью. Каждый переносчик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембраны — собственно переносчику. Белками-переносчиками могут быть пермеазы, место синтеза которых — цитоплазматическая мембрана. Облегченная диффузия протекает без затраты энергии, вещества перемещаются от более высокой концентрации к более низкой.

Активный транспорт происходит с помощью пермеаз и направлен на перенос веществ от меньшей концентрации в сторону большей, т.е. как бы против течения, поэтому данный про цесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных реакций в клетке.

Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видоизменяется в процессе переноса, например фосфорилируется. Выход веществ из клетки осуществляется за счет диффузии и при участии транспортных систем.

Факторы роста бактерий: витамины, АК, пуриновые и пиримидиновые основания, липиды.

Ауксотрофы — организмы, которые не способны синтезировать определенное органическое соединение, необходимое для роста этого организма. Ауксотрофия — характеристика подобных организмов, этот термин противоположен прототрофии. Без добавления в питательную среду этого вещества ауксотрофы не растут. Гемолитический стрептококк

Прототрофы, наоборот, неприхотливые бактерии. (Стаф. Ауреус)


8. Питательные среды. Искусственные питательные среды: простые, сложные, общего назначения, элективные, дифференциально-диагностические.

Питательная среда - среда, содержащие различные соединения сложного или простого состава, которые применяются для размножения бактерий или других микроорганизмов в лабораторных или промышленных условиях.

В бактериологической практике чаще всего используют сухие питательные среды, которые получают на основе достижений современной биотехнологии. Для их приготовления используют экономически рентабельное непищевое сырье: утратившие срок годности кровезаменители (гидролизин—кислотный гидролизат крови животных, аминопептид — ферментативный гидролизат крови; продукты биотехнологии (кормовые дрожжи, кормовой лизин, виноградная мука, белколизин). Сухие питательные среды могут храниться в течение длительного времени, удобны при транспортировке и имеют относительно стандартный состав.

По консистенции питательные среды могут быть жидкими, полужидкими, плотными. Плотные среды готовят путем добавления к жидкой среде 1,5—2% агара, полужидкие — 0,3— 0,7 % агара. Агар представляет собой продукт переработки особого вида морских водорослей, он плавится при температуре 80—86 °С, затвердевает при температуре около 40 °С и в застывшем состоянии придает среде плотность. В некоторых случаях для получения плотных питательных сред используют желатин (10—15%). Ряд естественных питательных сред (свернутая сыворотка крови, свернутый яичный белок) сами по себе являются плотными.

По целевому назначению среды подразделяют на основные, элективные и дифференциально-диагностические.

К основным относятся среды, применяемые для выращивания многих бактерий. Это триптические гидролизаты мясных, рыбных продуктов, крови животных или казеина, из которых готовят жидкую среду — питательный бульон и плотную — питательный агар. Такие среды служат основой для приготовления сложных питательных сред — сахарных, кровяных и др., удовлетворяющих пищевые потребности патогенных бактерий.

Элективные питательные среды предназначены для избирательного выделения и накопления микроорганизмов определенного вида (или определенной группы) из материалов, содержащих разнообразную постороннюю микрофлору. При создании элективных питательных сред исходят из биологических особенностей, которые отличают данные микроорганизмы от большинства других. Например, избирательный рост стафилококков наблюдается при повышенной концентрации хлорида натрия, холерного вибриона — в щелочной среде и т. д.

Дифференциально-диагностические питательные среды применяются для разграничения отдельных видов (или групп) микроорганизмов. Принцип построения этих сред основан на том, что разные виды бактерий различаются между собой по биохимической активности вследствие неодинакового набора ферментов.

Особую группу составляют синтетические и полусинтетические питательные среды. В состав синтетических сред входят химически чистые вещества: аминокислоты, минеральные соли, углеводы, витамины. В полусинтетические среды дополнительно включают пептон, дрожжевой экстракт и другие питательные вещества. Эти среды чаще всего применяют в научно-исследовательской работе и в микробиологической промышленности при получении антибиотиков, вакцин и других препаратов.

9. Бактериологический метод изучения микроорганизмов. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий. Характер роста микроорганизмов на жидких и плотных питательных средах.

Бактериологический метод диагностики

1 этап: Забор исследуемого материала для диагостики

2 этап: Получение изолированных колоний, в связи с чем проходит посев на питательные среды методом разобщения

3 этап: Изучение культуральных и морфологических свойств изолированных колоний.

Чистой культурой называется популяция бактерий одного вида или одной разновидности, выращенная на питательной среде.

Колония представляет собой видимое изолированное скопление особей одного вида микроорганизмов, образующееся в результате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее). Колонии бактерий разных видов отличаются друг от друга по своей морфологии, цвету и другим признакам.

Чистую культуру бактерий получают для проведения диагностических исследований — идентификации, которая достигается путем определения морфологических, культуральных, биохимических и других признаков микроорганизма.

Методы выделения чистых культур бактерий.

Универсальным инструментом для производства посевов является бактериальная петля. Кроме нее, для посева уколом применяют специальную бактериальную иглу, а для посевов на чашках Петри — металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пастеровские и градуированные пипетки. Первые предварительно изготовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец капилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец закрывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.

При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая другими пальцами той же руки петлю, набирают ею посевной материал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней части среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надг писывают, указывая дату посева и характер посевного материала (номер исследования или название культуры).

Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, петлей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горелки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питательной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и прекращению роста бактерий. Культивирование бактерий в такой системе называют периодическим культивированием, а культуру — периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивирование называется непрерывным, а культура — непрерывной.

Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолированные колонии округлой формы с ровными или неровными краями (S- и R-формы), различной консистенции и цвета, зависящего от пигмента бактерий. Пигменты, растворимые в воде, диффундируют в питательную среду и окрашивают её. Другая группа пигментов нерастворима в воде, но растворима в органических растворителях. И, наконец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.

Наиболее распространены среди микроорганизмов такие пигменты, как каротины, ксантофиллы и меланины. Меланины являются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины наряду с каталазой, супероксидцисмутазой и пероксидазами защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают антимикробным, антибиотикоподобным действием.


10. Способы получения энергии бактериями (брожение, дыхание). Типы дыхания бактерий.

Брожение – примитивный энергетический процесс расщепления глюкозы до ПВК. Образуется в цитоплазме.

Признаки Б. :

  • Низкий энергетический выход

  • Сустратный тип фосфорилирования

  • Акцептор – органические вещества.

В зависимости от конечного продукта выделяют:

  • Молочнокислое б. – лакто/бифидо бактерии, стрептококки;

  • Маслянокислое б. – споробразные бактерии

  • Пропионово-кислое б. – одноклеточные бактерии

  • Спиртовое брожение – дрожжи рода S.

Дыхание – совершенный энергетический процесс окисления до СО2 и Н2О.

Признаки дыхания:

  • Высокий энергетический выход (38 АТФ из 1 молекулы глюкозы)

  • Мембранный тип фосфорилирования (т.е. в лизосомах)

  • Реакции протекают межмолекулярно

  • Акцептор – О2 и органические вещества.

Состоит из нескольких этапов:

  1. Гликолиз – в цитоплазме клеток образуется ПВК и высвобождаются две молекулы АТФ

  2. ЦТК (Цикл Креббса) – влизосомах - ПВК окисляются до СО2 , Н2О, высвобождают 36 молекул АТФ

  3. Реакции протекают межмолекулярно

  4. Акцептор О2 и органические вещества.

По типу дыхания:

Облигатные (строгие) аэробы развиваются при наличии в атмосфере 20% кислорода (микобактерии туберкулеза), содержат ферменты, с помощью которых осуществляется перенос водорода от окисляемого субстрата к кислороду воздуха.

Микроаэрофилы нуждаются в значительно меньшем количестве кислорода, и его высокая концентрация хотя и не убивает бактерии, но задерживает их рост (актиноисцеты, бруцеллы, лептоспиры).

Факультативные анаэробы могут размножаться как в присутствии, так и в отсутствие кислорода (большинство патогенных и сапрофитных микробов — возбудители брюшного тифа, паратифов, кишечная палочка).

Облигатные анаэробы — бактерии, для которых наличие молекулярного кислорода является губительным (клостри-дии столбняка, ботулизма).

Аэробные бактерии в процессе дыхания окисляют различные органические вещества (углеводы, белки, жиры, спирты, органические кислоты и пр.).

Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Процессы разложения органических веществ в безкислородных условиях, сопровождающиеся выделением энергии, называют брожением. В зависимости от участия определенных механизмов различают следующие виды брожения: спиртовое, осуществляемое дрожжами, молочно-кислое, вызываемое мол очно-кислыми бактериями, масляно-кислое и пр.

Для культивирования анаэробных микроорганизмов необходимо создание бескислородных условий, достигаемое различными методами.
Физические методы основаны на создании вакуума в специальных аппаратах — анаэростатах. Иногда воздух в них заменяют каким-либо другим газом, например СО2. Доступ кислорода в питательную среду можно затруднить, если культивировать анаэробов в глубине столбика сахарного агара или среды Вильсона — Блера, налитых в пробирки в расплавленном состоянии и остуженных до 43°С. По методу Вейона — Виньяля расплавленный и остуженный агар с посевным материалом набирают в стеклянные трубочки, которые запаивают с двух концов.

Химические методы заключаются в том, что при культивировании исследуемого материала на плотных средах в эксикатор помещают химические вещества, например пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода. В жидкие питательные среды можно добавлять различные редуцирующие вещества: аскорбиновую или тиогликолевую кислоту.

Биологический метод основан на одновременном культивировании аэробов и анаэробов на плотных питательных средах в чашках Петри, герметически закупоренных. Вначале кислород поглощается растущими аэробами, посеянными на одной половине среды, а затем начинается рост анаэробов, посев которых сделан на другой половине. Наиболее удобна для культивирования анаэробов специальная среда Китта — Тароцци. В нее входят сахарный МПБ, который наливают в пробирки в количестве 10—12 мл, и кусочки вареных паренхиматозных органов. Перед употреблением среду Китта ,— Тароцци кипятят на водяной бане для удаления растворенного в ней кислорода. Среду заливают сверху стерильным вазелиновым маслом. Заметный рост анаэробов (помутнение) может наблюдаться через 48 ч и более в зависимости от количества посевного материала.


Рост изолированных колоний анаэробов можно получить при рассеве исследуемого материала по поверхности кровяно-сахарного агара, разлитого в чашки Петри. После посева чашки помещают в анаэростат. Исследуемый материал в убывающей концентрации можно засевать в высокий столбик агара. Образовавшиеся отдельные колонии анаэробов выделяют, распилив пробирку в месте роста. Колонии анаэробов для получения значительного количества биомассы отсевают затем на среду Китта — Тароцци. В качестве источника энергии для анаэробов используют глюкозу, добавление которой в питательную среду обязательно.


11. Ферменты бактерий. Классификация ферментов: 1) по химической природе; 2) по  генетическому контролю. Методы изучения ферментативной активности бактерий и ее использование для идентификации бактерий.

  1. По химической природе

* Оксиредуктазы – катализируют ОВР

* Трансферазы – ускоряют ракции перноса атомов в ЦТК и ПФЦ.

* Гидролазы – ускроение гидролитического расщепления белков и углеводов.

Ферменты агрессии:

Гиалуронидаза – расщепляет гиалиновую кислоту соединительной ткани

Нейраминидаза – нейраминовую кислоту слизистых

Коллагеназа – коллаген мышечных волокон (преим. Для клостридий)

Лецитиназа – лецитин мембран эритроцитов и мышечных волокон

Протеиназа – расщепляет иммуноглобулины.

Лиаза – участвует в реакциях расщепления двойных связей или присоединенеия по двойным связям

Изомеразы – обеспечивают внутреннюю конверсию с образованием различных изомеров

ЛиГазы (синтетазы) - р-ии биосинтеза белка.

  1. По генетическому контролю:

  • Конститутивные – синтезируются в течение всей жизни МО

  • Адаптивные (индуцибельные) – синтез адаптируется с одним субстратом

  • Репрессибельные - синтез угнетается избирательным накоплением продуктов реакции.

Эндоферменты – Функционируют внутри клетки

Экзоферменты – выделяются в окружающую среду (гидролазы).

Набор ферментов строго индивидуален для вида.
Изучение биохимических свойств бактерий проводится на дифференциально-диагностических средах (Эндо, Левина, Плоскирева, Ресселя, Гисса и др.).

Дифференциально-диагностические среды делятся на три группы: 



  1. среды для выявления протеолитических свойства бактерий (МПБ, мясо-пептонный желатин);

  2. среды для изучения ферментации углеводов (Эндо, Плоскирева, Гисса, Ресселя);

  3. среды для определения гемолитических свойств (кровяной агар).


Изучение протеолитических свойств проводиться с помощью индикаторов, позволяющих обнаруживать образование сероводорода, индола и т.д. при расщеплении белка. Для этого используют индикаторы ацетата свинца (на сероводород) и щавелевой кислоты (на индол). Индикаторы при их использовании изменяют цвет: при выделении сероводорода - чернеют, при выделении индола - краснеют. Для определения ферментации углеводов используются среды Гисса, в состав которых входят глюкоза, лактоза, маннит, мальтоза, сахароза и индикатор Андреде (карболовый фуксин, обесцвеченный содой). При ферментации того или другого углевода среда краснеет. (ПРИМЕРЫ)


12. Актиномицеты, их морфология. Роль актиномицетов в инфекционной патологии. Актиномицеты – продуценты антибиотиков.

Морфология. Род Actynomyces Ветвящиеся бактерии. Не содержат в клеточной стенке хитина, стенка имеет строение грамположительных бактерий. Мицелий имеет вид тонких прямых палочек, образуют нити. Характерная особенность актиномицетов — способность образовывать хорошо развитый мицелий. Палочковидные формы, часто с утолщенными концами, в мазке располагаются по одиночке, парами, V- и Y-образно. Все морфологические формы способны к истинному ветвлению, особенно на тиогликолевой полужидкой среде. По Граму окрашиваются плохо, часто образуют зернистые либо четкообразные формы; некислотоустойчивы. Типовой вид — Actinomycesbovis.

Культуральные свойства. факультативные анаэробы. Растут медленно, посевы следует культивировать 7сут. Температурный оптимум роста 37С. Некоторые штаммы дают α-β-гемолиз на средах с кровью. Некоторые виды формируют нитчатые микроколонии, напоминающие мицелий, на 7е сутки образуют S-формы колоний, иногда окрашенные в желтый/красный цвет. A. odontolyticusна кровяном агаре образует красные колонии с зоной β-гемолиза.

Биохимическая активность. Хемоорганотрофы. Ферментируют углеводы с образованием кислоты без газа, продукты ферментации — уксусная, муравьиная, молочная и янтарная кислоты. Наличие каталазы и способность восстанавливать нитраты в нитриты, индол не образуют.

Антигенная структура. В ИФА выделяют 6 cepoгpyпп: A, B, C, D, E и F.

Чувствительность к антимикробным препаратам. Чувствительны к пенициллинам, тетрациклину, эритромицину, но резистентны к антимикотикам. Чувствительны к действию обычно применяемых антисептиков и дезинфектантов.

Эпидемиология. Источник инфекции — почва. Механизм передачи — контактный, а путь передачи — раневой. Колонизируют слизистую оболочку полости рта человека и млекопитающих.

Патогенез. Вызывают оппортунистическую инфекцию. Клиника. Актиномикоз — хроническая оппортунистическая инфекция человека и животных, вызываемая анаэробными и факультативно-анаэробными актиномицетами, которая характеризуется гранулематозным воспалением.

Лечение. Применение пенициллина, тетрациклина, эритромицина, клиндамицина.

Профилактика. Специфическая профилактика - нет. Неспецифическая - повышение иммунного статуса.

Наибольшее количество антибиотиков (не менее 70 %), широко применяющихся на практике, относятся к веществам, образуемым актиномицетами (порядок Actinomycetales), преимущественно родом Streptomyces.

В эту группу включают биологически активные соединения, содержащие в молекуле два или более аминосахара, которые связаны гликозидными связями  с аминоциклитольным кольцом. Известно более 100 антибиотиков, относящихся к этой группе, наиболее важными из которых являются стрептомицины, неомицины, фортимицины, канамицины, гентамицины, сизомицины, тобрамицин и некоторые другие. Их объединяет не только близкое строение, но и механизм  биологического действия, связанный с нарушением считывания генетического кода. Стрептомицин, неомицин, канамицин и другие.


13. Спирохеты, их морфология и биологические свойства. Патогенные для человека виды.

Форма Спирохеты - тонкие спирально извитые нити, изогнутые вокруг центральной оси, которая, по-видимому, является пучком слившихся фибрилл. Они относятся к порядку Spirochaetales.  Спирохеты имеют штопорообразную извитую форму. Они отличаются друг от друга характером и числом завитков, длиной клеток, а также другими морфологическими и физиологическими признаками.
  1   2   3   4   5   6   7   8   9   ...   21


написать администратору сайта