Главная страница
Навигация по странице:

  • 21. Принципы и методы лабораторной диагностики вирусных инфекций.

  • Вирусологическое исследование (световая микроскопия)

  • Методы иммунодиагностики (серодиагностики и иммуноиндикации).

  • Молекулярно-генетических методов

  • Профаг. Лизогения. Фаговая конверсия. Применение фагов в биотехнологии, микробиологии и медицине.

  • Взаимодействие бактериофага с бактериальной клеткой

  • Адсорбция бактериофага

  • Внедрение фага внутрь клетки

  • Синтез ДНК и белка бактериофага

  • Формирование фага.

  • Практическое значение бактериофагов

  • Лечебно-профилактическое действие фагов основано на их литической активности.

  • Влияние физических факторов

  • Действие химических веществ

  • Вопросы к экзамену по микробиологии. Медицинская микробиология. Предмет, задачи, методы, связь с другими науками


    Скачать 1.02 Mb.
    НазваниеМедицинская микробиология. Предмет, задачи, методы, связь с другими науками
    АнкорВопросы к экзамену по микробиологии.docx
    Дата26.12.2017
    Размер1.02 Mb.
    Формат файлаdocx
    Имя файлаВопросы к экзамену по микробиологии.docx
    ТипДокументы
    #13043
    страница3 из 21
    1   2   3   4   5   6   7   8   9   ...   21

    Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки. Первый тип — взрывной — характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

    Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5—6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

    ВИРУСНАЯ ПЕРСИСТЕНЦИЯ- сохранение вируса в функционально активном состоянии в клетках организма или культур ткани за пределами тех сроков, которые характерны для острой инфекции. Соответственно, инфекции, обусловленные феноменом вирусной персистенции, называют персистентными вирусными инфекциями. Как правило, они протекают при менее выраженных по сравнению с острой инфекцией клинических проявлениях, либо вовсе без них.

    Выделяют три группы персистентных вирусных инфекций:

    1. хронические,

    2. латентные и

    3. медленные.

    Хронические инфекции отличаются от двух других тем, что присутствие вируса определяется относительно просто с помощью лабораторных методов; к их числу относятся, например, хронические формы вирусного гепатита В. При латентных инфекциях, типичных, в частности, для герпесвирусов, возбудитель маскирован в тканях, и его выявление возможно при обострениях. При медленных инфекциях, представителем которых может считаться болезнь Крейцфельда-Якоба, вирусная персистенция приходится на чрезвычайно длительный (несколько лет) инкубационный период, предшествующий медленно развивающемуся заболеванию.


    21. Принципы и методы лабораторной диагностики вирусных инфекций. Методы культивирования вирусов.

    Для лабораторной диагностики вирусных инфекций используются различные методы.

    Вирусологическое исследование (световая микроскопия) позволяет обнаружить характерные вирусные включения, а электронная микроскопия - сами вирионы, и по особенностям их строения диагностировать соответствующую инфекцию (например, ротавирусную).

    Для выделения вирусов используют заражение лабораторных животных, куриных эмбрионов или культуры тканей.

    Первичную идентификацию выделенного вируса до уровня семейства можно провести с помощью:

    • определения типа нуклеиновой кислоты (проба с бромдезоксиуридоном),

    • особенностей ее строения (электронная микроскопия),

    • размером вириона (фильтрование через мембранные фильтры с порами диаметром 50 и 100 нм),

    • наличия суперкапсидной оболочки (проба с эфиром),

    • гемагглютининов (реакция гемагглютинации),

    • типа симметрии нуклеокапсида (электронная микроскопия).

    Существенное значение для идентификации вирусов (до рода, вида, внутри вида) имеет также изучение их антигенного строения, которое проводится в реакции вирусонейтрализации с соответствующими иммунными сыворотками. Сущность этой реакции состоит в том, что после обработки гомологичными антителами вирус утрачивает свою биологическую активность (нейтрализуется) и клетка хозяина развивается так же, как и неинфицированная вирусом. Об этом судят по отсутствию цитопатического действия, цветной пробе, результатам реакции торможения гемагглютинации (РТГА), отсутствию изменений при заражении куриных эмбрионов, выживаемости чувствительных животных.

    Методы иммунодиагностики (серодиагностики и иммуноиндикации). Они реализуются в самых разнообразных реакциях иммунитета:

    • радиоизотопный иммунный анализ (РИА),

    • иммуноферментный анализ (ИФА),

    • реакция иммунофлюоресценции (РИФ),

    • реакция связывания комплемента (РСК),

    • реакция пассивной гемагглютинации (РПГА),

    • реакции торможения гемагглютинации (РТГА) и другие.

    При использовании методов серодиагностики обязательным является исследование парных сывороток. При этом четырехкратное нарастание титра антител во второй сыворотке в большинстве случаев служит показателем протекающей или свежеперенесенной инфекции. При исследовании одной сыворотки, взятой в острой стадии болезни, диагностическое значение имеет обнаружение антител класса Ig М, свидетельствующее об острой инфекции.

    Молекулярно-генетических методов (ДНК-зондирование, полимеразной цепной реакции - ПЦР). В первую очередь с их помощью выявляют персистирующие вирусы, находящиеся в клиническом материале, с трудом обнаруживаемые или не обнаруживаемые другими методами.

    Для культивирования вирусов используют культуры клеток, куриные эмбрионы и чувствительных лабораторных животных. Эти же методы используют и для культивирования риккетсий и хламидий — облигатных внутриклеточных бактерий, которые не растут на искусственных питательных средах.

    Культуры клеток. Культуры клеток готовят из тканей животных или человека. Культуры подразделяют на первичные (неперевиваемые), полуперевиваемые и перевиваемые.

    Приготовление первичной культуры клеток складывается из нескольких последовательных этапов: измельчения ткани, разъединения клеток путем трипсинизации, отмывания полученной однородной суспензии изолированных клеток от трипсина с последующим суспендированием клеток в питательной среде, обеспечивающей их рост, например в среде 199 с добавлением телячьей сыворотки крови.

    Перевиваемые культуры в отличие от первичных адаптированы к условиям, обеспечивающим им постоянное существование in vitro, и сохраняются на протяжении нескольких десятков пассажей.

    Их приготовляют из злокачественных и нормальных линий клеток, обладающих способностью длительно размножаться in vitro в определенных условиях. К ним относятся злокачественные клетки HeLa, первоначально выделенные из карциномы шейки матки, Нер-3 (из лимфоидной карциномы), а также нормальные клетки амниона человека, почек обезьяны и др.

    К полуперевиваемым культурам относятся диплоидные клетки человека. Они представляют собой клеточную систему, сохраняющую в процессе 50 пассажей (до года) диплоидный набор хромосом, типичный для соматических клеток используемой ткани. Диплоидные клетки человека не претерпевают злокачественного перерождения и этим выгодно отличаются от опухолевых.

    Куриные эмбрионы. Куриные эмбрионы по сравнению с культурами клеток значительно реже бывают контаминированы вирусами и микоплазмами, а также обладают сравнительно высокой жизнеспособностью и устойчивостью к различным воздействиям.

    Для получения чистых культур риккетсий, хламидий. и ряда вирусов используют 8—12-дневные куриные эмбрионы. О размножении упомянутых микроорганизмов судят по морфологическим изменениям, выявляемым после вскрытия эмбриона на его оболочках.

    О репродукции некоторых вирусов, например гриппа, оспы, можно судить по реакции гемагглютинации (РГА) с куриными или другими эритроцитами.

    К недостаткам данного метода относятся невозможность обнаружения исследуемого микроорганизма без предварительного вскрытия эмбриона, а также наличие в нем большого количества белков и других соединений, затрудняющих последующую очистку риккетсий или вирусов при изготовлении различных препаратов.

    Лабораторные животные. Видовая чувствительность животных к определенному вирусу и их возраст определяют репродуктивную способность вирусов. Во многих случаях только новорожденные животные чувствительны к тому или иному вирусу (например, мыши-сосунки — к вирусам Коксаки).

    Преимущество данного метода перед другими состоит в возможности выделения тех вирусов, которые плохо репродуцируются в культуре или эмбрионе. К его недостаткам относятся контаминация организма подопытных животных посторонними вирусами и микоплазмами, а также необходимость последующего заражения культуры клеток для получения чистой линии данного вируса, что удлиняет сроки исследования.


    22. Вирусы бактерий – фаги. Взаимодействие фага с бактериальной клеткой. Умеренные и вирулентные бактериофаги. Профаг. Лизогения. Фаговая конверсия. Применение фагов в биотехнологии, микробиологии и медицине.

    Явление бактериофагии открыл и изучил французский микробиолог д'Эррель. Д'Эррель назвал этот агент бактериофагом, а само явление лизиса - бактериофагией.

    Позже было подтверждено, что бактериофаг - живой. Это вирус бактерий, он размножается в бактериях, вызывая их лизис. Добавление бактериофага в культуру бактерий на жидкой питательной среде вызывает просветление среды. На плотных питательных средах при посеве смеси бактерий и бактериофага на фоне сплошного роста бактерий появляются стерильные пятна или негативные колонии фагов.

    Бактериофаги специфичны, то есть лизируют определенные виды бактерий. Отсюда их названия: дизентерийный бактериофаг, стафилококковый бактериофаг. Обнаружены фаги не только бактерий, но и актиномицетов.

    В практической медицине бактериофаги нашли применение как лечебные и профилактические средства,

    Важное значение имеет то, что на примере бактериофагии были открыты и изучены многие проблемы общей вирусологиии и молекулярной генетики.

    Структура бактериофагов

    Размеры бактериофагов колеблются от 20 нм до 200 нм. Как все вирусы, содержат ДНК, или РНК, и белковый капсид. Чаще всего встречаются и лучше изучены бактериофаги, имеющие форму сперматозоида или головастика. Состоят они из головки, хвостового отростка, батальной пластинки с короткими шинами и хвостовыми нитями. Внутри головки располагается спирально скрученная пить ДНК, покрытая     белковым     капсидом. Хвостовой отросток - что полый цилиндрический стержень, окруженный сократительным чехлом. Базальная пластинка и нити осуществляют  процесс  адсорбции бактериофага на бактериальной клетке. Существуют бактериофаги, имеющие другое строение: с короткими отростком, с отростком без сократительного чехла, без отростка, нитевидной формы.

    Взаимодействие бактериофага с бактериальной клеткой

    Как все вирусы, бактериофаги не размножаются на питательных средах. Их размножение происходит только в чувствительных к ним бактериальных клетках, в процессе взаимодействия, в котором наблюдаются те же фазы, что при взаимодействии других вирусов с клеткой.

    Адсорбция бактериофагаКак все вирусы, фаги неподвижны, и столкновение с бактерией происходит случайно, затем адсорбция становится прочной, если у клетки имеются на поверхности фагоспецифические рецепторы. Фаги, имеющие сократительный чехол, адсорбируются с помощью хвостового отростка.

    Внедрение фага внутрь клеткиПод действием фермента лизоцима, который находится в хвостовом сегменте, в клеточной стенке бактерии образуется отверстие. Через это отверстие в результате сокращения хвостового чехла внутрь бактериальной клетки переходит ДНК фага. Белковый капсид остается снаружи.

    Синтез ДНК и белка бактериофагаВ клетке прекращается синтез бактериальных белков. Образуются фаговые ДНК, а на рибосомах бактерий синтезируются молекулы фагового белка.

    Формирование фага. Сборка зрелых фагов из ДНК и капсида происходит в цитоплазме клетки.

    Выход зрелых фагов из клетки происходит при разрушении бактерий с помощью лизоцима, а затем зрелые фаги внедряются в новые клетки.

    "Урожай" фага, в зависимости от его вида, составляет от 20 до 200 частиц. Весь цикл взаимодействия, занимающий от 10 минут до нескольких часов, называется литическим циклом, а фаг при таком взаимодействии - вирулентным.

    В отличие от вирулентных, умеренные фаги не лизируют бактерии. Их геном, проникнув в клетку, встраивается в хромосому бактерии и в дальнейшем остается в хромосоме в виде профага и реплицируется вместе с ней. Бактерии, несущие профаг, называются лизогенными, а само явление - лизогенией. Лизогенные бактерии встречаются очень часто. Профаг, находясь в геноме бактерии, придает ей какие-либо новые свойства. Так, например, продукция экзотоксина у палочек дифтерии и ботулизма связана с наличием профага.

    В определенных условиях (воздействия температуры, химических веществ и др.) профаги могут превратиться в вирулентные бактериофаги. Размножаясь, они лизируют бактерии и могут переходить в другие бактериальные клетки. При выходе из хромосомы профаг может захватить соседние гены бактериальной хромосомы и при заражении другой бактерии, встроившись в ее хромосому, передать эти гены. Передача генетического материала от одной бактерии к другой с помощью умеренного бактериофага называется трансдукцией. Таким образом,  могут передаваться такие признаки, как устойчивость к антибиотикам, способность продуцировать какие-либо ферменты. Умеренные бактериофаги применяются в генетической инженерии в качестве вектора - переносчика генов.

    Практическое значение бактериофагов

    Препараты бактериофагов применяются для диагностики, профилактики и лечения. Фагодиагностика основана на специфичности бактериофагов: видоспецифические бактериофаги лизируют только определенные виды бактерий. Более того, бактерии одного и того же вида различаются по чувствительности к разным типовым бактериофагам, Таким образом можно с помощью набора типовых бактериофагов определять фаговары стафилококков, сальмонелл, вибрионов. Фаготипирование помогает установить источник инфекции и пути передачи.

    Лечебно-профилактическое действие фагов основано на их  литической активности.

    Для получения препарата бактериофага культуру бактерий заражают бактериофагом. На следующий день лизированную культуру фильтруют через бактериальный фильтр. К фильтрату в качестве консерванта добавляют хинозол.

    В нашей стране выпускаются препараты дизентерийного, сальмонеллезного, коли-протейного, стафилококкового и других бактериофагов, а также наборы типовых фагов для фаготипирования стафилококков, брюшнотифозных и других бактерий.


    23. Действие физических и химических факторов на микроорганизмы. Понятие о стерилизации, дезинфекции, асептике и антисептике. Основные группы дезинфицирующих и антисептических веществ. Механизм их антибактериального действия.

    Влияние физических факторов.

    Влияние температуры. Различные группы микроорганизмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) — мезофилами, при высокой — термофилами.

    К психрофильным микроорганизмам относится большая группа сапрофитов — обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, светящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бактерии (возбудитель псевдотуберкулеза размножается при температуре 4 °С). В зависимости от температуры культивирования свойства бактерий меняются. Интервал температур, при котором возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум — от 15 до 40 °С, приближаясь к температурному оптимуму мезофильных бактерий.

    Мезофилы включают основную группу патогенных и условно-патогенных бактерий. Они растут в диапазоне температур 10— 47 °С; оптимум роста для большинства из них 37 °С.

    При более высоких температурах (от 40 до 90 °С) развиваются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при температуре 250—300 °С и давлении 262 атм.

    Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компостом. Поскольку навоз наиболее богат термофилами, их рассматривают как показатель загрязненности почвы.

    Хорошо выдерживают микроорганизмы действие низких температур. Поэтому их можно долго хранить в замороженном состоянии, в том числе при температуре жидкого газа (—173 °С).

    Высушивание. Обезвоживание вызывает нарушение функций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гонореи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.

    Высушивание под вакуумом из замороженного состояния — лиофилизацию — используют для продления жизнеспособности, консервирования микроорганизмов. Лиофилизированные культуры микроорганизмов и иммунобиологические препараты длительно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.

    Действие излучения. Неионизирующее излучение — ультрафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение — гамма-излучение радиоактивных веществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предметов в больницах, родильных домах, микробиологических лабораториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200—450 нм.

    Ионизирующее излучение применяют для стерилизации одноразовой пластиковой микробиологической посуды, питательных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию ионизирующих излучений, например Micrococcus radiodurans была выделена из ядерного реактора.

    Действие химических веществ. Химические вещества могут оказывать различное действие на микроорганизмы: служить источниками питания; не оказывать какого-либо влияния; стимулировать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфицирующими. Антимикробные химические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д.

    Химические вещества, используемые для дезинфекции, относятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям.

    Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли,
    1   2   3   4   5   6   7   8   9   ...   21


    написать администратору сайта