Главная страница

Механика грунтов КР. Механика грунтов


Скачать 1.25 Mb.
НазваниеМеханика грунтов
Дата07.11.2021
Размер1.25 Mb.
Формат файлаdoc
Имя файлаМеханика грунтов КР.doc
ТипЗадача
#265153
страница3 из 5
1   2   3   4   5

Задача №4. Напряжения в грунтах от действия внешних сил


Исходные данные:

К горизонтальной поверхности массива грунта приложена вертикальная неравномерная нагрузка, распределенная в пределах гибкой полосы (ширина полосы b = 500 см) по закону трапеции от P1 = 0,26 МПа до P2 = 0,36 МПа. Определить величины вертикальных составляющих напряжений σZ в точках массива грунта для заданной вертикали, проходящей через точку М4 загруженной полосы, и горизонтали, расположенной на расстоянии Z = 200 см от поверхности. Точки по вертикали расположить от поверхности на расстоянии 100, 200, 400, 600 см. Точки по горизонтали расположить вправо и влево от середины загруженной полосы на расстоянии 0, 100, 300 см. По вычисленным напряжениям построить эпюры распределения напряжений σZ.



Рис. 4-1. Расчетная схема

Решение:

Для случая действия на поверхности массива грунта нагрузки, распределенной в пределах гибкой полосы по трапецеидальной эпюре, величину вертикальных сжимающих напряжений в заданной точке массива грунта определяют путем суммирования напряжений от прямоугольного и треугольного элементов эпюры внешней нагрузки.

Вертикальные напряжения σZ, возникающие от действия полосообразной равномерно распределенной нагрузки (прямоугольный элемент эпюры внешней нагрузки) определяют по формуле:

,

где KZ – коэффициент, определяемый в зависимости от величины относительных координат;

P – вертикальная нагрузка.

Вертикальные напряжения σZ, возникающие от действия полосообразной неравномерной нагрузки, распределенной по закону треугольника (треугольный элемент эпюры внешней нагрузки), определяются по формуле:

,

где – коэффициент, определяемый в зависимости от величины относительных координат;

P – наибольшая ордината треугольной нагрузки.

  1. Рассмотрим вертикаль М4.

Слева трапеция длиной 440 см с крайними сторонами МПа и МПа, справа длиной 60 см с крайними сторонами МПа и МПа. Разобьем левую трапецию на прямоугольник с боковой стороной МПа и треугольник с боковой стороной МПа, а правую трапецию на прямоугольник с боковой стороной МПа и треугольник с боковой стороной МПа.



Для глубины 100 см:

МПа

Для глубины 200 см:

МПа

Для глубины 400 см:

МПа

Для глубины 600 см:

МПа

  1. Рассмотрим горизонталь 200.

Пять точек {-300, -100, 0, 100, 300}, причем крайние точки находятся за пределами нагруженной поверхности.

а) Найдем величину вертикальных сжимающих напряжений в самой левой точке рассматриваемой горизонтали, то есть {-300}. Для этого продолжим трапецеидальную нагрузку до линии, проходящей через данную точку перпендикулярно поверхности. Получим две трапеции: одну длиной 550 см с меньшей боковой стороной равной 0,25 МПа, и большей боковой стороной равной 0,36 МПа; вторую ­– длиной 50 см с меньшей боковой стороной равной 0,25 МПа, и большей боковой стороной равной 0,26 МПа.

Искомая нагрузка будет равна разности нагрузок большой и малой трапеций.

МПа

б) Найдем величину вертикальных сжимающих напряжений в точке рассматриваемой горизонтали {-100}. Для этого разделим трапецеидальную нагрузку в линии, проходящей через данную точку перпендикулярно поверхности. Получим две трапеции: слева длиной 150 см с меньшей боковой стороной равной 0,26 МПа, и большей боковой стороной равной 0,29 МПа; справа ­– длиной 350 см с меньшей боковой стороной равной 0,29 МПа, и большей боковой стороной равной 0,36 МПа.

Искомая нагрузка будет равна сумме нагрузок левой и правой трапеций.

МПа

в) Найдем величину вертикальных сжимающих напряжений в точке рассматриваемой горизонтали {0}. Для этого разделим трапецеидальную нагрузку в линии, проходящей через данную точку перпендикулярно поверхности. Получим две трапеции длиной по 250 см каждая: слева с меньшей боковой стороной равной 0,26 МПа, и большей боковой стороной равной 0,31 МПа; справа ­– с меньшей боковой стороной равной 0,31 МПа, и большей боковой стороной равной 0,36 МПа.

Искомая нагрузка будет равна сумме нагрузок левой и правой трапеций.

МПа

г) Найдем величину вертикальных сжимающих напряжений в точке рассматриваемой горизонтали {100}. Для этого разделим трапецеидальную нагрузку в линии, проходящей через данную точку перпендикулярно поверхности. Получим две трапеции: слева длиной 350 см с меньшей боковой стороной равной 0,26 МПа, и большей боковой стороной равной 0,33 МПа; справа ­– длиной 150 см с меньшей боковой стороной равной 0,33 МПа, и большей боковой стороной равной 0,36 МПа.

Искомая нагрузка будет равна сумме нагрузок левой и правой трапеций.

МПа

д) Найдем величину вертикальных сжимающих напряжений в самой правой точке рассматриваемой горизонтали, то есть {300}. Для этого продолжим трапецеидальную нагрузку до линии, проходящей через данную точку перпендикулярно поверхности. Получим две трапеции: одну длиной 550 см с меньшей боковой стороной равной 0,26 МПа, и большей боковой стороной равной 0,37 МПа; вторую ­– длиной 50 см с меньшей боковой стороной равной 0,36 МПа, и большей боковой стороной равной 0,37 МПа.

Искомая нагрузка будет равна разности нагрузок большой и малой трапеций.

МПа

  1. На основании проведенных расчетов строим эпюры распределения σZ.



Рис. 4-2. Эпюры напряжений σZ от прямоугольной составляющей внешней нагрузки


Рис. 4-3. Эпюры напряжений σZ от треугольной составляющей внешней нагрузки



Рис. 4-4. Суммарные эпюры напряжений σZ

1   2   3   4   5


написать администратору сайта