Главная страница

метод рекомендации. Методические рекомендации по анестезиолого-реанимационному веден. Методические рекомендации фар, версия 4


Скачать 4.33 Mb.
НазваниеМетодические рекомендации фар, версия 4
Анкорметод рекомендации
Дата13.03.2022
Размер4.33 Mb.
Формат файлаpdf
Имя файлаМетодические рекомендации по анестезиолого-реанимационному веден.pdf
ТипМетодические рекомендации
#394395
страница18 из 23
1   ...   15   16   17   18   19   20   21   22   23
Aouba A., Baldolli A., Geffray L., et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann Rheum Dis. 2020.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/32376597 164.
Fisher C.J., Jr., Dhainaut J.F., Opal S.M., et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome
Study
Group.
JAMA.
1994;
271(23):1836–1843.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/8196140 165.
Fisher C.J., Jr., Slotman G.J., Opal S.M., et al. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open- label, placebo-controlled multicenter trial. Crit Care Med. 1994; 22(1):12–21. Available at: https://www.ncbi.nlm.nih.gov/pubmed/8124953 166.
Opal S.M., Fisher C.J., Jr., Dhainaut J.F., et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit
Care
Med.
1997;
25(7):1115–1124.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/9233735 167.
Winthrop K.L., Mariette X., Silva J.T., et al. ESCMID Study Group for Infections in
Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors).
Clin
Microbiol
Infect.
2018;
24(Suppl
2):S21–S40.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/29447987 168.
Flint J., Panchal S., Hurrell A., et al. BSR and BHPR guideline on prescribing drugs in pregnancy and breastfeeding-Part II: analgesics and other drugs used in rheumatology practice.
Rheumatology
(Oxford).
2016;
55(9):1698–1702.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/26750125

116 169.
Genovese M.C., Kremer J., Zamani O., et al. Baricitinib in Patients with Refractory
Rheumatoid Arthritis. N Engl J Med. 2016; 374(13):1243–1252. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27028914 170.
Smolen J.S., Genovese M.C., Takeuchi T., et al. Safety profile of baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment. J Rheumatol.
2019; 46(1):7–18. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30219772 171.
Dougados M., van der Heijde D., Chen Y.C., et al. Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the
RA-BUILD study.
Ann
Rheum
Dis.
2017;
76(1):88–95.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/27689735 172.
Ahn J.Y., Sohn Y., Lee S.H., et al. Use of convalescent plasma therapy in two COVID-
19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci. 2020;
35(14):e149. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32281317 173.
Pei S., Yuan X., Zhang Z., et al. Convalescent plasma to treat COVID-19: Chinese strategy and experiences. medRxiv.
2020.
[Preprint].
Available at: https://www.medrxiv.org/content/10.1101/2020.04.07.20056440v1 174.
Ye M., Fu D., Ren Y., et al. Treatment with convalescent plasma for COVID-19 patients in
Wuhan,
China.
J
Med
Virol.
2020.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/32293713 175.
Zeng Q., Yu Z., Gou J., et al. Effect of convalescent plasma therapy on viral shedding and survival in COVID-19 patients. J Infect Dis. 2020. Available at: https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiaa228/5826985 176.
Duan K., Liu B., Li C., et al. Effectiveness of convalescent plasma therapy in severe
COVID-19 patients.
Proc
Natl
Acad
Sci
USA.
2020.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/32253318 177.
Burnouf T., Radosevich M. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J. 2003; 9(4):309. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12904626 178.
Cheng Y., Wong R., Soo Y.O., et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005; 24(1):44–46. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15616839 179.
Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis.

117
J
Infect
Dis.
2015;
211(1):80–90.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/25030060 180.
Narick C., Triulzi D.J., Yazer M.H. Transfusion-associated circulatory overload after plasma transfusion.
Transfusion.
2012;
52(1):160–165.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/21762464 181.
Falzarano D., de Wit E., Martellaro C., et al. Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin. Scientific reports. 2013;
3: 1686.
182.
Falzarano D., de Wit E., Rasmussen A.L., et al. Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nature medicine.
2013; 19: 1313–1317.
183.
Momattin H., Mohammed K., Zumla A., et al. Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)-possible lessons from a systematic review of SARS-CoV therapy. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases. 2013; 17: e792–798.
184.
Hart B.J., Dyall J., Postnikova E., et al. Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays.
The Journal of general virology. 2014; 95: 571–577.
185.
Arabi Y.M., Shalhoub S., Mandourah Y., et al. Ribavirin and Interferon Therapy for
Critically Ill Patients With Middle East Respiratory Syndrome: A Multicenter
Observational Study. Clinical infectious diseases. 2019. DOI: 10.1093/cid/ciz544 186.
Brunner H.I., Ruperto N., Zuber Z., et al. Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase 3, randomised, double-blind withdrawal trial. Annals of the Rheumatic Diseases. 2015; 74: 1110–1117.
187.
Genovese M.C., van Adelsberg J., Fan C., et al. Two years of sarilumab in patients with rheumatoid arthritis and an inadequate response to MTX: safety, efficacy and radiographic outcomes. Rheumatology (Oxford). 2018; 57: 1423–1431.
188.
Yokota S., Imagawa T., Mori M., et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebocontrolled, withdrawal phase III trial. Lancet. 2008; 371: 998–1006.
189.
Le R.Q., Li L., Yuan W., et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell- induced severe or life-threatening cytokine release syndrome. The oncologist. 2018; 23: 943.
190.
Campbell L., Chen C., Bhagat S.S., et al. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature

118 review and meta-analysis of randomized controlled trials. Rheumatology (Oxford). 2011;
50: 552–562.
191.
Chen X., Zhao B., Qu Y., et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely associated with drastically elevated interleukin 6 (IL-6) level in critically ill
COVID-19 patients. MedRxiv. 2020. DOI: 10.1101/2020.02.29.20029520 192.
Geng Z., Yu Y., Hu S., Dong L., Ye C. Tocilizumab and the risk of respiratory adverse events in patients with rheumatoid arthritis: a systematic review and meta-analysis of randomised controlled trials. Clinical and experimental rheumatology. 2019; 37: 318–323.
193.
Wang M., Cao R., Zhang L., et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30(3):269–
271. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32020029 194.
Sanders M. Pharmacological treatments for coronavirus Disease 2019 (COVID-19) A
Rewiew. JAMA. 2020: E1–E13.
195.
Haffizulla J., Hartman A., Hoppers M., et al. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo- controlled, phase 2b/3 trial. The Lancet Infectious diseases. 2014; 14: 609–618.
196.
Chen H., Zhang Y., Huang J., et al. Favipiravir versus Arbidol for COVID 19: A
Randomized Clinical Trial. DOI: 10.1101/2020.03.17.20037432 197.
Furuta Y., Komeno T., Nakamura T. Favipiravir (T 705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93(7):449–463. DOI:
10.2183/pjab.93.027 198.
Cai Q., Yang M., Liu D., et al. Experimental Treatment with Favipiravir for COVID
19: An Open-Label Control Study, Engineering. 2020. DOI: 10.1016/j.eng.2020.03.007 199. https://www.covid19treatmentguidelines.nih.gov/immune-based-therapy/interleukin-
6-inhibitors/
200.
Zhang C., Wu Z., Li J.W., et al. The cytokine release syndrome (CRS) of severe
COVID-19 and Interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020. [Epub ahead of print] PMID:
3223446790.
201.
Beigel J.H., Tomashek K.M., Dodd L.E., et al. Remdesivir for the Treatment of Covid-
19—Preliminary Report. N Engl J Med. . 2020 May 22. DOI: 10.1056/NEJMoa2007764 202.
Goldman J.D., Lye D.C.B., Hui D.S., et al. Investigators Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020 May 27. DOI:
10.1056/NEJMoa2015301

119 203.
Grein J., Ohmagari N., Shin D., et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020; 382(24):2327–2336. DOI:
10.1056/NEJMoa2007016 204.
Sheahan T.P., Sims A.C., Graham R.L., et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017; 9(396).
Available at: https://www.ncbi.nlm.nih.gov/pubmed/28659436 205.
Sheahan T.P., Sims A.C., Leist S.R., et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV.
Nat
Commun.
2020;
11(1):222.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/31924756 206.
de Wit E., Feldmann F., Cronin J., et al. Prophylactic and therapeutic remdesivir (GS-
5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad
Sci USA. 2020; 117(12):6771–6776. DOI: 10.1073/pnas.1922083117 207.
Williamson B.N., Feldmann F., Schwarz B., et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. bioRxiv. 2020 [Preprint]. Available at: https://www.biorxiv.org/content/10.1101/2020.04.15.043166v2.full.pdf
208.
Food and Drug Administration. Fact sheet for health care providers emergency use authorization
(EUA) of remdesivir
(GS-5734™).
2020.
Available at: https://www.fda.gov/media/137566/download. Accessed: May 8, 2020 209.
Wang Y., Zhang D., Du G., et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet. 2020.
Available at: https://www.thelancet.com/journals/lancet/article/PIIS0140-
6736(20)31022-9/fulltext#seccestitle10 210.
Mulangu S., Dodd L.E., Davey R.T., Jr., et al. A Randomized, controlled trial of ebola virus disease therapeutics. N Engl J Med. 2019; 381(24):2293–2303. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31774950 211.
Rhodes A., Evans L.E., Alhazzani W., et al. Surviving Sepsis Campaign: International
Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;
43: 304–377.
212.
Murray M.J., DeBlock H., Erstad B., et al. Clinical Practice Guidelines for Sustained
Neuromuscular Blockade in the Adult Critically Ill Patient. Crit Care Med. 2016; 44:
2079–2103.
213.
Griffiths M., Fan E., Baudouin S.V. New UK guidelines for the management of adult patients with ARDS. Thorax. 2019; 74: 931–933.

120 214.
Claesson J., Freundlich M., Gunnarsson I., et al. Scandinavian clinical practice guideline on fluid and drug therapy in adults with acute respiratory distress syndrome.
Acta Anaesthesiol Scand. 2016; 60: 697–709.
215.
Papazian L., Aubron C., Brochard L., et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019; 9: 69.
216.
The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early
Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med.
2019; 380: 1997–2008.
217.
Martindale R., Patel J.J., Taylor B., et al. Nutrition Therapy in the Patient with
COVID-19 Disease Requiring ICU Care. Updated April 1, 2020. Reviewed and Approved by the Society of Critical Care Medicine and the American Society for Parenteral and
Enteral Nutrition.
218.
Singer P., Reintam A., Berger M., et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clinical Nutrition. 2019; 38: 48–79.
219.
Руководство по профилактике и лечению новой коронавирусной инфекции
COVID-19. Первая академическая клиника Университетской школы медицины провинции Чжэцзян. Составлено на основе клинической практики. Перевод на русский язык выполнен МИА «Россия сегодня» с согласия авторов руководства.
Научными консультантами выступили специалисты Первого Московского государственного медицинского университета имени И.М. Сеченова. 96 с.
[Guidelines for the prevention and treatment of new coronavirus infection COVID-19.
The first academic clinic of Zhejiang University School of Medicine. Compiled on the basis of clinical practice. The translation into Russian was made by MIA Russia Today with the consent of the authors of the manual. Scientific consultants were specialists of the First Moscow State Medical University named after I.M. Sechenov. 96 p. (In Russ)]
220.
Allingstrup M.J., et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr. 2012; 31: 462–468.
221.
Weijs P.J., Stapel S.N., de Groot S.D., et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr. 2012; 36(1): 60–68.
222.
Reeves A., White H., Sosnowski K., et al. Energy and protein intakes of hospitalized patients with acute respiratory failure receiving non-invasive ventilation. Clin Nutr/ 2014;
33: 1068–1073.

121 223.
Kogo M., Nagata K., Morimoto T., et al. Enteral nutrition is a risk factor for airway complications in subjects undergoing noninvasive ventilation for acute respiratory failure.
Respir Care. 2017; 62: 459–467.
224.
Ledr S.B., Siner J.M., Bizzaro M.J., et al. Oral alimentation in neonatal and adult populations requiring high-flow oxygen via nasal canula. Dysphagia/ 2016; 31: 154–159.
225.
Boulton-Jones J.R., Lewis J., Jobling J.C., Teahon K. Experience of post-pyloric feeding in seriously ill patients in clinical practice. Clin Nutr. 2004; 23: 35–41.
226.
Montejo J.C., Grau T., Acosta J., et al. Multicenter, prospective, randomized, single- blind study comparing the efficacy and gastrointestinal complications of early jejunal feeding with early gastric feeding in critically ill patients. Crit Care Med. 2002; 30: 796–
800.
227.
Barazzoni R., Bischoff S., Breda J., et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection, Clinical
Nutrition. DOI: 10.1016/j.clnu.2020.03.022 228.
Reignier J., Dimet J., Martin-Lefevre L., et al. Before-after study of a standardized
ICU protocol for early enteral feeding in patients turned in the prone position. Clin Nutr.
2010; 29(2): 210–216. DOI: 10.1016/j.clnu.2009.08.004 229.
Saez de la Fuente I., Saez de la Fuente J., Quintana Estelles M.D., et al. Enteral
Nutrition in Patients Receiving Mechanical Ventilation in a Prone Position. JPEN J
Parenter Enteral Nutr. 2016; 40(2): 250–255. DOI: 10.1177/0148607114553232 230.
Doig G.S., Simpson F., Sweetman E.A., et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013; 309: 2130–2138.
231.
Oshima Т., Heidegger С.Р. Supplemental Parenteral Nutrition Is the Key to Prevent
Energy Deficits in Critically Ill Patients Nutrition in Clinical Practice. 2016; 31: 432–437.
232.
McClave S.A., Taylor B.E., Martindale R.G., et al. Society of Critical Care Medicine;
American Society for Parenteral and Enteral Nutrition. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical
Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition
(ASPEN). JPEN J Parenter Enteral Nutr. 2016; 40(2): 159–211.
233.
Gupta A., Govil D.; Bhatnagar S., et al. Efficacy and safety of parenteral omega 3 fatty acids in ventilated patients with acute lung injury. Indian J. Crit. Care Med. 2011, 15, 108.
234.
Ridley E.J., Davies A.R., Robins E.J., et al. Nutrition therapy in adult patients receiving extracorporeal membrane oxygenation: a prospective, multicenter, observational study.
Critical Care and Resuscitation. 2015; 17(3): 183–189.

122 235.
Bear D.E., Smith E., Barrett N.A. Nutrition support in adult patients receiving extracorporeal membrane oxygenation. Nutr Clin Pract. 2018; 33(6): 738–746.
236.
Ohbe H., Jo T., Yamana H., et al. Early enteral nutrition for cardiogenic or obstructive shock requiring venoarterial extracorporeal membrane oxygenation: a nationwide inpatient database study. Intensive Care Medicine. 2018; 44(8): 1258–1265.
237.
Hermanides J., Vriesendorp T.M., Bosman R.J., et al. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010; 38: 1430–1434.
238.
Egi M., Krinsley J.S., Maurer P., et al. Premorbid glycemic control modifies the interaction between acute hypoglycaemia and mortality. Intensive Care Med. 2016; 42:
562–571.
239.
Preiser J.C., Devos P., Ruiz-Santana S., et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009; 35: 1738–1748.
240.
Finfer S., Chittock D.R., Su S.Y., et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009; 360: 1283e97.
241.
Krinsley J.S., Preiser J.C. Time in blood glucose range 70 to 140 mg/dl > 80 % is strongly associated with increased survival in non-diabetic critically ill adults. Crit Care.
2015; 19: 179.
242.
Bartlett R.H., Ogino M.T., Brodie D., et al. Initial ELSO Guidance Document: ECMO for COVID-19 Patients with Severe Cardiopulmonary Failure. ASAIO J. 2020 Mar 30.
DOI: 10.1097/MAT.0000000000001173 243.
ELSO
COVID-19
Interim
Guidelines
(2020). https://www.elso.org/Portals/0/Files/pdf/guidelines%20elso%20covid%20for%20web_F
inal.pdf
244.
ELSO. Guidance Document: ECMO for COVID-19 Patients with Severe
Cardiopulmonary Failure. 23 March 2020. http://covid19.elso.org
245.
Brodie D., Slutsky A.S., Combes A. Extracorporeal Life Support for Adults With
Respiratory Failure and Related Indications: A Review. JAMA. 2019; 322(6): 557–568.
246.
ELSO. Extracorporeal Life Support Organisation (ELSO). Guidelince for Adult
Respiratory Failure. 2017. https://www.elso.org/Resources/Guidelines.aspx
247.
Combes A., Hajage D., Capellier G., et al. EOLIA Trial Group, REVA, and
ECMONet. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress
Syndrome. N Engl J Med. 2018; 378(21): 1965–1975.

123 248.
Li M., Gu S.-C., Wu X.-J., et al. Extracorporeal membrane oxygenation support in 2019 novel coronavirus disease: indications, timing, and implementation. Chinese Medical
Journal. February 2020. DOI: 10.1097/CM9.0000000000000778 249.
Combes A., Brodie D., Bartlett R., et al. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med. 2014; 190(5): 488–496.
250.
ELSO. Extracorporeal Life Support Organisation (ELSO). Guidelines for Adult
Cardiac
Failure. https://www.elso.org/Portals/0/IGD/Archive/FileManager/e76ef78eabcusersshyerdocum entselsoguidelinesforadultcardiacfailure1.3.pdf
251.
Grasselli G., Zangrillo A., Zanella A., et al. Baseline Characteristics and Outcomes of
1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region,
Italy. JAMA. 2020 Apr 6. DOI: 10.1001/jama.2020.5394 252.
Arentz M., Yim E., Klaff L., et al. Characteristics and Outcomes of 21 Critically Ill
Patients With COVID-19 in Washington State. JAMA. Published online March 19, 2020.
DOI: 10.1001/jama.2020.4326 253.
Report on 2249 patients critically ill with COVID-19 Accessed on https://www.icnarc.org/About/Latest-News/2020/04/04/Report-On-2249-Patients-
Critically Ill-With-Covid-19 (Accessed 07.04.2020.)
254.
Schmidt M., Bailey M., Sheldrake J., et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory
Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score. Am J Respir
Crit Care Med. 2014; 189(11): 1374–1382.
255.
Schmidt M., Burrell A., Roberts L., et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J.
2015; 36(33): 2246–2256.
256.
Schmidt M., Zogheib E., Roze H., et al. The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Intensive Care Med. 2013; 39(10): 1704–1713.
257.
ELSO. Extracorporeal Life Support Organization (ELSO). Guidelines for ECPR
Cases.
258.
ELSO. Extracorporeal Life Support Organization (ELSO). Ultrasound Guidance for
Extra-corporeal Membrane Oxygenation.
259.
ELSO. Extracorporeal Life Support Organisation (ELSO). Ultrasound Guidance for
Extra-corporeal Membrane Oxygenation Veno-Venous ECMO specific guidelines.

124 260.
Platts D.G., Sedgwick J.F., Burstow D.J., et al. The Role of Echocardiography in the
Management of Patients Supported by Extracorporeal Membrane Oxygenation. Journal of the American Society of Echocardiography. 2012; 25(2): 131–141.
261.
ELSO. Extracorporeal Life Support Organisation (ELSO). Ultrasound Guidance for
Extra-corporeal Membrane Oxygenation Veno-Arterial ECMO specific guidelines.
262.
Brower R.G., Matthay M.A., Morris A., et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000; 342(18): 1301–1308.
263.
Abrams D., Schmidt M., Pham T., et al. Mechanical Ventilation for Acute Respiratory
Distress Syndrome during Extracorporeal Life Support. Research and Practice. Am J
Respir Crit Care Med. 2020; 201(5): 514–525.
264.
Peek G.J., Mugford M., Tiruvoipati R., et al.; CESAR trial collaboration. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009; 374: 1351–1363.
265.
Agerstrand C.L., Burkart K.M., Abrams D.C., et al. Blood conservation in extracorporeal membrane oxygenation for acute respiratory distress syndrome. Ann
Thorac Surg. 2015; 99(2): 590–595. DOI: 10.1016/j.athoracsur.2014.08.039 266.
ELSO. Extracorporeal Life Support Organisation (ELSO). Anticoagulation Guideline. https://www.elso.org/Portals/0/Files/elsoanticoagulationguideline8-2014-table- contents.pdf
267.
Vasques F., Romitti F., Gattinoni L., Camporota L. How I wean patients from veno- venous extra-corporeal membrane oxygenation. Critical Care. 2019; 23(1): 316.
268.
Broman L.M., Malfertheiner M.V., Montisci A., Pappalardo F. Weaning from veno- venous extracorporeal membrane oxygenation: how I do it. J Thorac Dis. 2018; 10(Suppl
5): S692–S697.
269.
Aissaoui N., Luyt C.E., Leprince P., et al. Predictors of successful extracorporeal membrane oxygenation (ECMO) weaning after assistance for refractory cardiogenic shock. Intensive Care Med. 2011; 37(11): 1738–1745.
270.
Barnett K., Mercer S.W., Norbury M., et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study.
Lancet. 2012; 380(9836):37–43. Epub 2012 May 10. DOI: 10.1016/S0140-
6736(12)60240-2

125 271.
Mills S.E.E., Nicolson K.P., Smith B.H. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth. 2019; 123(2):e273–e83.
Epub 2019 May 10. DOI: 10.1016/j.bja.2019.03.023 272.
Franchi S., Moschetti G., Amodeo G., Sacerdote P. Do all opioid drugs share the same immunomodulatory properties? A review from animal and human studies. Front Immunol.
2019; 10:2914. DOI: 10.3389/fimmu.2019.02914 273.
Sacerdote P. Opioids and the immune system. Palliat Med. 2006; 20(Suppl 1):s9–15.
274.
Ren K., Dubner R. Interactions between the immune and nervous systems in pain. Nat
Med. 2010; 16(11):1267–76. Epub 2010 Oct 14. DOI: 10.1038/nm.2234 275.
A Joint Statement by American Society of Regional Anesthesia and Pain Medicine
(ASRA) and European Society of Regional Anesthesia and Pain Therapy (ESRA). URL: https://www.asra.com/page/2903/recommendations-on-chronic-pain-practice-during-the- covid-19-pandemic
276.
Desforges M., Le Coupanec A., Stodola J.K., et al. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014;
194: 145–158.
277.
Sun T., Guan J. Novel coronavirus and central nervous system. Eur J Neurol. 2020.
Accepted Author Manuscript. DOI: 10.1111/ene.14227 278.
The European League Against Rheumatism. EULAR Guidance for patients COVID-
19 outbreak. https://www.eular.org/eular_guidance_for_patients_covid19_outbreak.cfm
(Accessed on March 18, 2020.)
279.
The
American
Academy of
Dermatology. https://assets.ctfassets.net/1ny4yoiyrqia/PicgNuD0IpYd9MSOwab47/023ce3cf6eb82cb3 04b4ad4a8ef50d56/Biologics_and_COVID-19.pdf (Accessed on March 18, 2020.)
280.
American College of Rheumatology. https://www.rheumatology.org/announcements
(Accessed on March 18, 2020.)
281.
Actualisation recommendations
Covid-19. https://dgs- urgent.sante.gouv.fr/dgsurgent/inter/detailsMessageBuilder.do?id=30500&cmd=visualis erMessage (Accessed on March 19, 2020.)
282.
Updated: WHO Now Doesnʼt Recommend Avoiding Ibuprofen ForCOVID-19
Symptoms. Available at https://www.sciencealert.com/who-recommends-to-avoid- taking-ibuprofen-for-covid-19-symptoms
283.
European Medicines Agency. EMA gives advice on the use of non-steroidal anti- inflammatories for COVID-19. https://www.ema.europa.eu/en/news/ema-gives-advice- use-non-steroidal-anti-inflammatories-covid-19

126 284.
Giudicessi J.R., Noseworthy P.A., Friedman P.A., et al. Urgent guidance for navigating and circumventing the QTc prolonging and torsadogenic potential of possible pharmacotherapies for COVID-19. Mayo Clin Proc. 2020.
285.
Wu C.-I., Postema P.G., Arbelo E., et al. SARS-CoV-2, COVID-19, and inherited arrhythmia syndromes. Heart Rhythm. 2020.
286.
FDA Drug Safety Communication: Interactions between certain HIV or hepatitis C drugs and cholesterol-lowering statin drugs can increase the risk of muscle injury. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication- interactions-between-certain-hiv-or-hepatitis-c-drugs-and-cholesterol
287.
van der Lee M., Sankatsing R., Schippers E., et al. Pharmacokinetics and pharmacodynamics of combined use of lopinavir/ritonavir and rosuvastatin in HIV- infected patients. Antivir Ther. 2007; 12(7): 1127–1132.
288.
Glesby M.J., Aberg J.A., Kendall M.A., et al. Pharmacokinetic interactions between indinavir plus ritonavir and calcium channel blockers. Clinical Pharmacology &
Therapeutics/ 2005; 78: 143–153. DOI: 10.1016/j.clpt.2005.04.005 289.
Levin M., Morais-Almeida M., Ansotegui I.J., et al. Acute asthma management during
SARS-CoV2-pandemic 2020 [ahead of print, 2020 May 14]. World Allergy Organ J.
2020; 100125. DOI: 10.1016/j.waojou.2020.100125 290.
Attaway A. Management of patients with COPD during the COVID-19 pandemic. Clev
Clin J Med. 2020 May 11;ccc007; DOI: 10.3949/ccjm.87a.ccc007 291.
Global initiative for asthma. Covid-19: GINA Answers to Frequently Asked Questions on Asthma Management [Internet]; 2020. Available from: https://ginasthma.org/covid19- gina-answers-to-frequently-asked-questions-on-asthmamanagement
292.
Simonds A.K., Hanak A., Chatwin M., et al. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol Assess. 2010; 14(46):131–172.
293.
Bansal M. Cardiovascular disease and COVID-19 [published online ahead of print,
2020
Mar
25].
Diabetes
Metab
Syndr.
2020;
14(3):
247–250.
DOI:
10.1016/j.dsx.2020.03.013 294.
Libby P., Simon D.I. Inflammation and thrombosis: the clot thickens. Circulation.
2001; 103: 1718–1720.
295.
Driggin E., Madhavan M.V., Bikdeli B., et al. Cardiovascular Considerations for
Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019

127
(COVID-19) Pandemic. J Am Coll Cardiol. 2020 Mar 18. pii: S0735-1097(20)34637-4.
DOI: 10.1016/j.jacc.2020.03.031 296.
Xiong T.-Y., Redwood S., Prendergast B., Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020 Mar 18. pii: ehaa231. DOI: 10.1093/eurheartj/ehaa231 297.
Landoni G., Zangrillo A., Lomivorotov V.V., et al. Cardiac protection with phosphocreatine: a meta-analysis. Interact Cardiovasc Thorac Surg. 2016; 23(4): 637–646.
DOI: 10.1093/icvts/ivw171 298.
Böhm M., Frey N., Giannitsis E., et al. Coronavirus Disease 2019 (COVID-19) and its implications for cardiovascular care: expert document from the German Cardiac Society and the World Heart Federation. Clin Res Cardiol. 2020 May 27:1–14. DOI:
10.1007/s00392-020-01656-3 299.
Asokan I., Rabadia S.V., Yang E.H. The COVID-19 Pandemic and its Impact on the
Cardio-Oncology Population. Curr Oncol Rep. 2020; 22(6):60. DOI: 10.1007/s11912-
020-00945-4 300.
Mingxing F., Landoni G., Zangrillo A., et al. Phosphocreatine in Cardiac Surgery
Patients: A Meta-Analysis of Randomized Controlled Trials. J Cardiothorac Vasc Anesth.
2018; 32(2): 762–770. DOI: 10.1053/j.jvca.2017.07.024. Epub 2017 Jul 24.
301.
Yang Dezhi, Han Hui, Chen Gui. Clinical effect observation of coenzyme in the treatment of children with viral myocarditis [J]. Internal Medicine. 2018; 13(04): 568–
570.
302.
Li Wenhui, Wen Zhizhi, Li Bailin, et al. Coenzyme Q10, creatine phosphate, and salvia injection combined to treat patients with viral myocarditis Observation of clinical effect
[J]. Drugs and Clinics. 2019; 1: 71–72.
303.
Remuzzi A., Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020; 395: 1225–
1228.
304.
Bornstein S., Rubino F., Khunt K., et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020.
Published Online April 23 2020. DOI: 10.1016/ S2213-8587(20)30152-2 305.
Luzi L., Radaelli M.G. Influenza and obesity: its odd relationship and the lessons for
COVID-19 pandemic.
Acta
Diabetol
2020.
Published online
April
5.
DOI:10.1007/s00592-020-01522-8 306.
Hartmann-Boyce J., Morris E., Goyder C., et al. Managing diabetes during the
COVID- 19 epidemic. 2020. https://www.cebm.net/ covid-19/managing-diabetes-during- the-covid-19-pandemic/ (Accessed April 15, 2020.)

128 307.
Wu Q., Zhou L., Sun X., et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep 2017; 7: 9110.
308.
Dellinger R.P., Levy M.M., Rhodes A., et al. Surviving Sepsis Campaign Guidelines
Committee. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013; 41: 580–637.
309.
Hsia D.S., Grove O., Cefalu W.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes.
2017; 24(1):73–79. DOI: 10.1097/MED.0000000000000311 310.
Cristelo C., Azevedo C., Moreira Marques J., et al. SARS-CoV-2 and Diabetes: New
Challenges for the Disease [online ahead of print, 2020 May 21]. Diabetes Res Clin Pract.
2020; 108228. DOI: 10.1016/j.diabres.2020.108228 311.
Filippatos T.D., Panagiotopoulou T.V., Elisaf M.S. Adverse Effects of Glp-1 Receptor
Agonists. The Review of Diabetic Studies. 2014; 11(3–4):202–230. DOI:
10.1900/RDS.2014.11.202 312.
Critchley J.A., Carey I.M., Harris T., et al. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes
Care. 2018; 41:2127–35.
313.
Lambertini M., Toss A., Passaro A., et al. Cancer care during the spread of coronavirus disease 2019 (COVID-19) in Italy: young oncologists’ perspective. ESMO Open 2020; 5: e000759. DOI: 10.1136/esmoopen-2020-000759 314.
Kutikov A., Weinberg D.S., Edelman M.J., et al. A War on Two Fronts: Cancer Care in the Time of COVID-19. Ann Intern Med. 2020.
315.
Ueda M., Martins R., Hendrie P.C., et al. Managing Cancer Care During the COVID-
19 Pandemic: Agility and Collaboration Toward a Common Goal. J Natl Compr Canc
Netw. 2020: 1.
316.
Couper K., Taylor-Phillips S., Grove A., et al. COVID-19 infection risk to rescuers from patients in cardiac arrest. Consensus on Science with Treatment Recommendations
[Internet] Brussels, Belgium: International Liaison Committee on Resuscitation (ILCOR).
2020 March 30. Available from: http://ilcor.org
317.
Al‐Shamsi H.O., Alhazzani W., Alhuraiji A., et al. A Practical Approach to the
Management of Cancer Patients During the Novel Coronavirus Disease 2019 (COVID-
19) Pandemic: An International Collaborative Group. The Oncol. 2020. DOI:
10.1634/theoncologist.2020-0213 318.
Liang W., Guan W., Chen R., et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 2020; 21:335–337.

129 319.
Chalumeau M., Bidet P., Lina G., et al. Transmission of Panton-Valentine leukocidin- producing Staphylococcus aureus to a physician during resuscitation of a child. Clinical
Infectious Diseases. 2005; 41: e29–30.
320.
Nam H.S., Yeon M.Y., Park J.W., et al. Healthcare worker infected with Middle East
Respiratory Syndrome during cardiopulmonary resuscitation in Korea, 2015. Epidemiol
Health. 2017; 39: e2017052.
321.
Loeb M., McGeer A., Henry B., et al. SARS among critical care nurses, Toronto.
Emerging infectious diseases. 2004; 10: 251–255.
322.
Christian M.D., Loutfy M., McDonald L.C., et al. Possible SARS coronavirus transmission during cardiopulmonary resuscitation. Emerg Infect Dis. 2004; 10: 287–293.
323.
Kim W.Y., Choi W., Park S.W., et al. Nosocomial transmission of severe fever with thrombocytopenia syndrome in Korea. Clinical Infectious Diseases. 2015; 60: 1681–1683.
324.
Knapp J., Weigand M.A., Popp E. Transmission of tuberculosis during cardiopulmonary resuscitation. Focus on breathing system filters. [German]. Notfall und
Rettungsmedizin. 2016; 19:48–51.
325.
Shin H., Oh J., Lim T.H., et al. Comparing the protective performances of 3 types of
N95 filtering facepiece respirators during chest compressions: A randomized simulation study. Medicine. 2017; 96: e8308.
326.
Bikdeli B., Madhavan M.V., Jimenez D., et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow- up. J Am Coll Cardiol. 2020. DOI: 10.1016/j.jacc.2020.04.031 327.
Wichmann D., et al. Autopsy findings and venous thromboembolism in patients with
COVID-19. Ann Intern Med. DOI: 10.7326/M20-2003 328.
Hippensteel J.A., Burnham E.L., Jolley S.E. Prevalence of Venous Thromboembolism in Critically Ill Patients with COVID-19. Br J Haematol. 2020; 10.1111/bjh.16908. DOI:
10.1111/bjh.16908 329.
Tal S., Spectre G., Kornowski R., Perl L. Venous Thromboembolism Complicated with
COVID-19: What Do We Know So Far? Acta Haematol. 2020:1-8. DOI:
10.1159/000508233 330.
Spyropoulos A.C., Levy J.H., Ageno W., et al. Scientific and Standardization
Committee Communication: Clinical Guidance on the Diagnosis, Prevention and
Treatment of Venous Thromboembolism in Hospitalized Patients with COVID-19. J
Thromb Haemost. 2020; 10.1111/jth.14929. DOI: 10.1111/jth.14929

130 331.
Al-Ani F., Chehade S., Lazo-Langner A. Thrombosis risk associated with COVID-19 infection.
A scoping review.
Thromb
Res.
2020;
192:152–160.
DOI:
10.1016/j.thromres.2020.05.039 332.
Zhang L., Feng X., Zhang D., et al. Deep Vein Thrombosis in Hospitalized Patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China: Prevalence, Risk Factors, and Outcome. Circulation. 2020. DOI: 10.1161/CIRCULATIONAHA.120.046702 333.
Zhai Z., Li C., Chen Y., et al. Prevention and Treatment of Venous Thromboembolism
Associated with Coronavirus Disease 2019 Infection: A Consensus Statement before
Guidelines. Thromb Haemost. 2020; 120(6):937–948. DOI: 10.1055/s-0040-1710019 334.
Casini A., Alberio L., Angelillo-Scherrer A., et al. Thromboprophylaxis and laboratory monitoring for in-hospital patients with COVID-19 — a Swiss consensus statement by the
Working Party Hemostasis. Swiss Med Wkly. 2020; 150:w20247. DOI:
10.4414/smw.2020.20247 335.
Thachil J., Tang N., Gando S., et al. Laboratory haemostasis monitoring in COVID-
19. J Thromb Haemost. 2020. DOI: 10.1111/jth.14866 336.
Favaloro E.J., Lippi G. Recommendations for Minimal Laboratory Testing Panels in
Patients with COVID-19: Potential for Prognostic Monitoring. Semin Thromb Hemost.
2020; 46(3):379–382. DOI: 10.1055/s-0040-1709498 337.
Barnes G.D., Burnett A., Allen A., et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2020:1–10. DOI: 10.1007/s11239-020-02138-z
338.
Moores L.K., Tritschler T., Brosnahan S., et al. Prevention, diagnosis and treatment of venous thromboembolism in patients with COVID-19: CHEST Guideline and Expert
Panel Report. Chest. 2020;S0012-3692(20)31625-1. DOI: 10.1016/j.chest.2020.05.559 339.
Linnemann B., Bauersachs R., Grebe M., et al. Venous thromboembolism in patients with COVID-19 (SARS-CoV-2 infection) — a position paper of the German Society of
Angiology (DGA). Vasa. 2020:1–5. DOI: 10.1024/0301-1526/a000885 340.
Skeik N., Mirza A., Manunga J. Management of venous thromboembolism during the
COVID-19 pandemic. J Vasc Surg Venous Lymphat Disord. 2020;S2213-
333X(20)30307-3. DOI: 10.1016/j.jvsv.2020.05.005 341.
Porfidia A., Pola R. Venous thromboembolism in COVID-19 patients. J Thromb
Haemost. 2020; 18(6):1516–1517. DOI: 10.1111/jth.14842 342.
Criel M., Falter M., Jaeken J., et al. Venous thromboembolism in SARS-CoV-2 patients: only a problem in ventilated ICU patients, or is there more to it? Eur Respir J.
2020; 2001201. DOI: 10.1183/13993003.01201-2020

131 343.
Буланов А.Ю., Ройтман Е.В. Новая коронавирусная инфекция, система гемостаза и проблемы дозирования гепаринов: это важно сказать сейчас. Тромбоз, гемостаз, реология. 2020; 2: 11–18.
344.
Connors J.M., Levy J.H. Thromboinflammation and the hypercoagulability of
COVID-19. First published: 17 April 2020. DOI: 10.1111/jth.14849 345.
Paranjpe I., Fuster V., Lala A., et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol.
2020; 76(1):122–124. DOI: 10.1016/j.jacc.2020.05.001 346.
Liu X., et al. Heparin-induced thrombocytopenia is associated with a high risk of mortality in critical COVID-19 patients receiving heparin-involved treatment. Posted
2020 April 28. DOI: 10.1101/2020.04.23.20076851 347.
Grillet F., et al. Acute Pulmonary Embolism Associated with COVID-19 Pneumonia
Detected by Pulmonary CT Angiography Radiology Published online: 2020 Apr 23. DOI:
10.1148/radiol.2020201544 348.
Watson R.A., Johnson D.M., Dharia R.N., et al. Anti-Coagulant and Anti-Platelet
Therapy in the COVID-19 Patient: A Best Practices Quality Initiative Across a Large
Health System. Hosp Pract (1995). 2020. DOI: 10.1080/21548331.2020.1772639 349.
Poggiali E., Bastoni D., Ioannilli E., et al. Deep Vein Thrombosis and Pulmonary
Embolism: Two Complications of COVID-19 Pneumonia? Eur J Case Rep Intern Med.
2020; 7(5):001646. DOI: 10.12890/2020_001646 350.
Porres-Aguilar M., Ayala A., Mukherjee D., Tapson V.F. Pulmonary embolism response teams in the challenging era of venous thromboembolism associated with
COVID-19. J Vasc Surg Venous Lymphat Disord. 2020; S2213-333X(20)30320-6. DOI:
10.1016/j.jvsv.2020.04.032 351.
Qanadli S.D., Gudmundsson L., Rotzinger D.C. Catheter-directed thrombolysis in
COVID-19 pneumonia with acute PE: Thinking beyond the guidelines. Thromb Res.
2020; 192:9–11. DOI: 10.1016/j.thromres.2020.05.007 352.
Lee G.C., Fralick M., Sholzberg M. Coagulopathy, associated with COVID-19. CMAJ.
2020; 193:E583.
353.
Montravers P., Lucet J.C. Propositions pour la prise en charge anesthésique d’un patient suspect ou infecté à Coronavirus COVID-19. https://sfar.org/propositions-pour-la- prise-en-charge-anesthesique-dun-patient-suspect-ou-infecte-a-coronavirus-covid-19/
354.
Chen X., Liu Y., Gong Y., et al. Chinese Society of Anesthesiology, Chinese
Association of Anesthesiologists. Perioperative Management of Patients Infected with the
Novel Coronavirus: Recommendation from the Joint Task Force of the Chinese Society

132 of Anesthesiology and the Chinese Association of Anesthesiologists. Anesthesiology.
2020 Mar 26. DOI: 10.1097/ALN.0000000000003301 355.
Wen X., Li Y. Anesthesia Procedure of Emergency Operation for Patients with
Suspected or Confirmed COVID-19. Surg Infect (Larchmt). 2020; 21(3):299. DOI:
10.1089/sur.2020.040 356.
Буланов А.Ю. Новая коронавирусная инфекция и проблемы гемостаза: это нужно сказать сегодня. Тромбоз, гемостаз и реология, 2020. [Epub ahead of print.]
[Bulanov A.Yu. A new coronavirus infection and hemostasis problems: this must be said today. Thrombosis, hemostasis and rheology. 2020. (In Russ)]
357.
Greenland J.R., Michelow M.D., Wang L., London M.J. COVID-19 Infection:
Implications for Perioperative and Critical Care Physicians. Anesthesiology. 2020 Mar 27.
DOI: 10.1097/ALN.0000000000003303 358.
Zhang H.F., Bo L., Lin Y., et al. Response of Chinese Anesthesiologists to the COVID-
19 Outbreak. Anesthesiology. 2020 Mar 30. DOI: 10.1097/ALN.0000000000003300 359.
Böhrer H., Fleischer F., Werning P. Tussive effect of a fentanyl bolus administered through a central venous catheter. Anaesthesia. 1990; 45:18–21.
360.
Chestnutʼs Obstetric Anesthesia: Principles and Practice 6th Edition. D.H. Chestnut et al. Elsevier; 2019.
361.
Liu H., Wang L.L., Zhao S.J., et al. Why are pregnant women susceptible to COVID-
19? An immunological viewpoint. J Reprod Immunol. 2020 Mar 19; 139: 103122. DOI:
10.1016/j.jri.2020.103122 362.
Coronavirus (COVID-19) Infection in Pregnancy Information for healthcare professionals.
Version
7:
Published
Thursday
9
April
2020. https://www.rcog.org.uk/globalassets/documents/guidelines/2020-04-09-coronavirus- covid-19-infection-in-pregnancy.pdf
363.
Kalafat E., Yaprak E., Cinar G., Varli B., et al. Lung ultrasound and computed tomographic findings in pregnant woman with COVID-19. Ultrasound Obstet Gynecol.
2020 Apr 6. DOI: 10.1002/uog.22034 364.
Liu H., Liu F., Li J., Zhang T., et al. Clinical and CT imaging features of the COVID-
19 pneumonia: Focus on pregnant women and children. J Infect. 2020 Mar 20. pii: S0163-
4453(20)30118-3. DOI: 10.1016/j.jinf.2020.03.007 365.
Mathur S., Pillenahalli Maheshwarappa R., Fouladirad S., et al. Emergency Imaging in Pregnancy and Lactation. Can Assoc Radiol J. 2020; 71(3):396–402. DOI:
10.1177/0846537120906482

133 366.
Wang P.S., Rodgers S.K., Horrow M.M. Ultrasound of the First Trimester. Radiol Clin
North Am. 2019; 57(3): 617–633. DOI: 10.1016/j.rcl.2019.01.006 367.
Tirada N., Dreizin D., Khati N.J., et al. Imaging Pregnant and Lactating Patients.
Radiographics. 2015; 35(6): 1751–1765. DOI: 10.1148/rg.2015150031 368.
ГОСТ Р МЭК 60601-2-33-2013: Изделия медицинские электрические. Часть 2–
33. Частные требования безопасности с учетом основных функциональных характеристик к медицинскому диагностическому оборудованию, работающему на основе магнитного резонанса.
[GOST R IEC 60601-2-33-2013: Medical electrical equipment. Part 2–33. Particular safety requirements, taking into account the basic functional characteristics of medical diagnostic equipment operating on the basis of magnetic resonance. (In Russ)]
369.
СанПиН 2.6.1.1192-03. Гигиенические требования к устройству и эксплуатации рентгеновских кабинетов, аппаратов и проведению рентгенологических исследований.
[SanPiN 2.6.1.1192–03. Hygienic requirements for the design and operation of X-ray rooms, apparatuses and X-ray studies. (In Russ)]
370.
Juusela A., Nazir M., Gimovsky M. Two Cases of COVID-19 Related Cardiomyopathy in Pregnancy. American Journal of Obstetrics & Gynecology. 3 April 2020. In Press.
Journal Pre-proof. DOI: 10.1016/j.ajogmf.2020.100113 371.
Bauer M., Bernstein K., Dinges E., et al. Obstetric Anesthesia During the COVID-19
Pandemic. Anesth Analg. 2020 Apr 6. DOI: 10.1213/ANE.0000000000004856 372.
Thachil J., Tang N., Gando S., et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020. Accepted Author
Manuscript. DOI: 10.1111/jth.14810 373.
Mei H., Hu Y. Characteristics, causes, diagnosis and treatment of coagulation dysfunction in patients with COVID-19. Zhonghua Xue Ye Xue Za Zhi. 2020; 41(0):
E002. DOI: 10.3760/cma.j.issn.0253-2727.2020.0002 374.
Tang N., Li D., Wang X., Sun Z. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. 2020; 18(4): 844–847. DOI:
10.1111/jth.14768 375.
Xia W., Shao J., Guo Y., et al. Clinical and CT features in pediatric patients with
COVID-19 infection: Different points from adults. Pediatr Pulmonol. 2020; 55(5): 1169–
1174. DOI: 10.1002/ppul.24718. [Epub 2020 Mar 5]

134 376.
Liu W., Zhang Q., Chen J., et al. Detection of Covid-19 in Children in Early January
2020 in Wuhan, China. N Engl J Med. 2020; 382(14): 1370–1371. DOI:
10.1056/NEJMc2003717 377.
Wei M., Yuan J., Liu Y., et al. Novel Coronavirus Infection in Hospitalized Infants
Under 1 Year of Age in China. JAMA. 2020 Feb 14. DOI: 10.1001/jama.2020.2131 378.
Coronavirus (COVID-19): evidence relevant to critical care. [Cochrane special collection]. URL: https://www.cochrane.org/news/special-collection-coronavirus-covid-
19-evidence-relevant-critical-care
379.
Dong Y., Mo X., Hu Y., et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020. DOI: 10.1542/peds.2020-0702.
[Epub ahead of print]: https://pediatrics.aappublications.org/content/early/2020/03/16/peds.2020-0702.long
380.
Sun D., Li H., Lu X.X., et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single centerʼs observational study. World J Pediatr.
2020 Mar 19. DOI: 10.1007/s12519-020-00354-4 381.
Zeng L., Xia S., Yuan W., et al. Neonatal Early-Onset Infection With SARS-CoV-2 in
33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr.
Published online March 26, 2020. DOI: 10.1001/jamapediatrics.2020.0878 382.
Wang J., Qi H., Bao L., Li F., Shi Y. A contingency plan for the management of the
2019 novel coronavirus outbreak in neonatal intensive care units. Lancet Child Adolesc
Health. 2020. DOI: 10.1016/S2352-4642(20)30040-7 383.
Pouletty M., Borocco C., Ouldali N., et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-
COVID-19): a multicentre cohort. Ann Rheum Dis. 2020; 0:1–8. DOI:
10.1136/annrheumdis-2020-217960 384.
Verdoni L., Mazza A., Gervasoni A. An Outbreak of Severe Kawasaki-like Disease at the Italian Epicentre of the SARS-CoV-2 Epidemic: An Observational Cohort Study.
Lancet. 2020; 395(10239):1771–1778. DOI: 10.1016/S0140-6736(20)31103-X
385.
Toubiana J., Poirault C., Corsia A., et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ. 2020; 369. DOI: 10.1136/bmj.m2094 386.
Suggested citation: European Centre for Disease Prevention and Control. Paediatric inflammatory multisystem syndrome and SARS-CoV-2 infection in children. 2020 May
15. ECDC: Stockholm; 2020.

135 387.
Belot A., Antona D., Renolleau S., et al. SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study. France, 1 March to 17 May 2020. Euro
Surveill. 2020; 25(22):pii=2001010. DOI: 10.2807/1560-7917.ES.2020.25.22.2001010 388.
Whittaker E., Bamford A., Kenny J., et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-
CoV-2. JAMA. 2020 June 8. DOI: 10.1001/jama.2020.10369 389.
Cheung E.W., Zachariah P., Gorelik M., et al. Multisystem Inflammatory Syndrome
Related to COVID-19 in Previously Healthy Children and Adolescents in New York City.
JAMA. 2020 June 8. DOI: 10.1001/jama.2020.10374 390.
Son M.B.F. Pediatric inflammatory syndrome temporally related to covid-19. BMJ.
2020; 369:m2123. DOI: 10.1136/bmj.m2123 391.
Ronco C., Reis T., De Rosa S. Coronavirus Epidemic and Extracorporeal Therapies in
Intensive Care: si vis pacem para bellum. Blood Purif. 2020 Mar 13: 1–4. DOI:
10.1159/000507039.
392.
Interim Guidance for Emergency Medical Services (EMS) Systems and 911 Public
Safety Answering Points (PSAPs) for COVID-19 in the United States. https://www.cdc.gov/ coronavirus/2019-ncov/hcp/guidance-for-ems.html
393.
Thomas P., Baldwin C., Bissett B., et al. Physiotherapy management for COVID-19 in the acute hospital setting.
J
Physiother.
2020;
66(2):73–82.
DOI:
10.1016/j.jphys.2020.03.011. 2020 394. https://www.mhlw.go.jp/content/000609467.pdf
395.
Recommendations to guide clinical practice. Version 1.0, published 23 March 2020.
396.
Green M., Marzano V., Leditschke I.A., et al. Mobilization of intensive care patients: a multidisciplinary practical guide for clinicians. Multidiscip Healthc. 2016; 9: 247–256.
397.
Aoyagi J., Kanai T., Maru T., et al. Efficacy of plasma exchange with a high dose of acyclovir for disseminated varicella infection. CEN Case Rep. 2020; 9(1): 15–18. DOI:
10.1007/s13730-019-00415-2 398.
Zhang X.Y., Ye X.W., Feng D.X., et al. Hemophagocytic Lymphohistiocytosis Induced by Severe Pandemic Influenza A(H1N1) 2009 Virus Infection: A Case Report. Case Rep
Med. 2011; 2011: 951910. DOI: 10.1155/2011/951910 399.
Demirkol D., Yildizdas D., Bayrakci B., et al.; Turkish Secondary HLH/MAS Critical
Care Study Group. Hyperferritinemia in the critically ill child with secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction syndrome/macrophage activation syndrome: what is the treatment? Crit Care. 2012; 16(2):
R52. DOI: 10.1186/cc11256

136 400.
Pandey P.K., Kaul E., Agarwal N., Goel S. Effectiveness of therapeutic plasma exchange in a critically ill child with secondary hemophagocytic lymphohistiocytosis.
Asian J Transfus Sci. 2019; 13(2): 145–147. DOI: 10.4103/ajts.AJTS_45_18 401.
EVMS critical care COVID-19 management protocol. 2020. Available at https://www.evms.edu/media/evms_public/departments/internal_medicine/EVMS_Critic al_Care_COVID-19_Protocol.pdf
402.
Keith P., Day M., Perkins L., et al. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant
COVID-19. Crit Care. 2020; 24(1): 128. DOI: 10.1186/s13054-020-2836-4 403.
Xu K., Cai H., Shen Y., et al. [Management of corona virus disease-19 (COVID-19): the Zhejiang experience.] Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 Feb 21; 49(1): 0.
404.
Zhang C., Huang S., Zheng F., Dai Y. Controversial treatments: An updated understanding of the coronavirus disease 2019. J Med Virol. Mar 26, 2020. DOI:
10.1002/jmv.25788 405.
Casadevall A., Pirofski L.A. The convalescent sera option for containing COVID-19.
The Journal of clinical investigation. 2020. DOI: 10.1172/JCI138003 406.
Hung I.F., To K.K., Lee C.K., et al. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest. 2013; 144: 464–473.
407.
Hung I.F., To K.K., Lee C.K., et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A(H1N1) 2009 virus infection. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America.
2011; 52: 447–456.
408.
Brown J.F., Rowe K., Zacharias P., et al. Apheresis for collection of Ebola convalescent plasma in Liberia. J Clin Apher. 2017; 32(3): 175–181. DOI:
10.1002/jca.21482 409.
Shen C., Wang Z., Zhao F., et al. Treatment of 5 Critically Ill Patients With COVID-
19 With Convalescent Plasma. JAMA. 2020 Mar 27. DOI: 10.1001/jama.2020.4783 410.
Soo Y.O., Cheng Y., Wong R., et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin
Microbiol Infect. 2004; 10(7): 676–678.
411.
Lim V.W., Tudor Car L., Leo Y.S., et al. Passive immune therapy and other immunomodulatory agents for the treatment of severe influenza: Systematic review and meta-analysis. Influenza Other Respir Viruses. 2020; 14(2): 226–236. DOI:
10.1111/irv.12699

137 412.
Белкин А.А., Давыдова Н.С., Лейдерман И.Н. и др. Реабилитация в интенсивной терапии Клинические рекомендации. В кн.: Анестезиология и реаниматология. Под ред. И.Б. Заболотских? Е.М. Шифмана. М.; ГЭОТАР-медиа, 2016. С. 833–858.
[Belkin A.A., Davydova N.S., Lejderman I.N., et al. Reabilitaciya v intensivnoj terapii
Klinicheskie rekomendacii. In.: Anesteziologiya i reanimatologiya. Eds. I.B. Zabolotskih,
E.M. SHifman. M.; GEOTAR-media, 2016. S. 833–858. (In Russ)]
413.
Приказ Министерства здравоохранения России от 19.03.2020 № 198н «О временном порядке организации работы медицинских организаций в целях реализации мер по профилактике и снижению рисков распространения новой коронавирусной инфекции COVID-19» (в ред. от 27.03.2020 и от 02.04.2020).
[Prikaz Ministerstva zdravoohraneniya Rossii ot 19.03.2020 № 198n “O vremennom poryadke organizacii raboty medicinskih organizacij v celyah realizacii mer po profilaktike i snizheniyu riskov rasprostraneniya novoj koronavirusnoj infekcii COVID-
19” (v red. ot 27.03.2020 i ot 02.04.2020). (In Russ)]
414.
Zhonghua Jie He He Hu Xi Za Zhi. [Recommendations for Respiratory Rehabilitation of Coronavirus Disease 2019 in Adult]. [Article in Chinese]. 2020; 43(4): 308–314. DOI:
10.3760/cma.j.cn112147-20200228-00206 415.
Bein T., Bischoff M., Brückner U., et al. S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders Revision. Anaesthesist.
2015; 64: 1–26. DOI: 10.1007/s00101-015-0071-1

138
1   ...   15   16   17   18   19   20   21   22   23


написать администратору сайта