А.И. Подгорный Диагностирование и регулировка рулевого управления автотранспортных средств. А.И. Подгорный Диагностирование и регулировка рулевого управлени. Методические указания к лабораторной работе по курсам Техническая эксплуатация транспортных средств иТехническая диагностика на транспорте
Скачать 3.17 Mb.
|
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра эксплуатации автомобилей ДИАГНОСТИРОВАНИЕ И РЕГУЛИРОВКА РУЛЕВОГО УПРАВЛЕНИЯ АВТОТРАНСПОРТНЫХ СРЕДСТВ Методические указания к лабораторной работе по курсам «Техническая эксплуатация транспортных средств» и «Техническая диагностика на транспорте» для студентов специальностей 150200 «Автомобили и автомобильное хозяйство» и 240400 «Организация и безопасность дорожного движения» дневной формы обучения Составители А.И.ПОДГОРНЫЙ Д.В.ЦЫГАНКОВ Утверждены на заседании кафедры Протокол № 1 от 3.09.02 Рекомендованы к печати учебно-методической комиссией специальности 150200 Протокол №6 от 16.10.02 Электронная копия находится в библиотеке главного корпуса ГУ КузГТУ КЕМЕРОВО 2002 1 Цель работы: получить практические навыки по диагностированию и регулировке рулевого управления согласно ГОСТ Р 51709-2001. Перед выполнением работы следует изучить: 1) назначение, принцип действия и особенности конструкций рулевых управлений, применяемых на отечественных и импортных автомобилях; 2) методы диагностирования и требования, предъявляемые к рулевым управлениям; 3) устройство и принцип действия оборудования, применяемого в ла- бораторной работе; 4) порядок выполнения работы. 1. Назначение, принцип действия и особенности конструкций рулевых управлений, применяемых на отечественных и импортных автомобилях Рулевое управление обеспечивает необходимое направление движения автомобиля путем раздельного или согласованного поворота его управляе- мых колес. Совокупность механизмов, служащих для поворота управляе- мых колес, называется рулевым управлением. Рулевое управление включает рулевой механизм, который осуществляет передачу усилия от водителя к рулевому приводу, рулевой привод, который осуществляет передачу усилия от рулевого механизма к управляемым колесам, а у некоторых автомобилей рулевой усилитель, облегчающий поворот управляемых колес. Схема руле- вого управления показана на рис. 1.1. Каждое управляемое колесо установлено на поворотной цапфе 13, со- единенной с балкой моста 11 шкворнем 8. Шкворень неподвижно закреплен в балке, и его верхний и нижний концы входят в проушины поворотной цапфы. При повороте цапфы за рычаг 7 она вместе с установленным на ней управляемым колесом поворачивается вокруг шкворня. Поворотные цапфы соединены между собой рычагами 9 и 12 и поперечной тягой 10. Поэтому управляемые колеса поворачиваются одновременно. Поворот управляемых колес осуществляется при вращении водителем рулевого колеса 1. От него вращение передается через вал 2 на червяк 3, на- ходящийся в зацеплении с сектором 4. На валу сектора закреплена сошка 5, поворачивающая через продольную тягу 6 и рычаг 7 поворотные цапфы с управляемыми колесами. 2 Рис. 1.1. Схема рулевого управления: 1 – рулевое колесо; 2 – рулевой вал; 3 – червяк; 4 – сектор; 5 – рулевая сошка; 6 – продольная тяга; 7, 9 и 12 – рычаги поворотных цапф; 8 – шкворень; 10 – поперечная тяга; 11 – балка моста; 13 – поворотная цап- фа Рулевое колесо 1, вал 2, червяк 3 и сектор 4 образуют рулевой меха- низм, увеличивающий момент, прикладываемый водителем к рулевому ко- лесу для поворота управляемых колес. Сошка 5, продольная тяга 6, рычаги 7, 9 и 12 поворотных цапф и поперечная тяга 10 составляют рулевой при- вод, передающий усилие от сошки к поворотным цапфам обоих управляе- мых колес. Поперечная тяга 10, рычаги 9 и 12 образуют рулевую трапецию, обеспечивающую необходимое соотношение между углами поворота управляемых колес. Увеличение момента рулевым механизмом оценивается передаточным числом рулевого механизма, представляющим собой отношение угла пово- рота рулевого колеса к углу поворота сошки. В зависимости от типа рулево- го механизма (его рабочей пары) передаточное число может быть постоян- ным или переменным, т.е. менять свое значение в процессе поворота колеса. У легковых автомобилей передаточное число рулевого механизма составля- ет 12-20, а у грузовых автомобилей 15-25. Передаточное число рулевого привода зависит от отношения плеч рычага поворотной цапфы и рулевой 3 сошки. При повороте управляемых колес вследствие изменения наклона этих рычагов передаточное число рулевого привода изменяется в среднем от 0,85 до 1,1. Рис. 1.2. Схема рулевого управления при независимой подвеске: 1 – стойка; 2 – поворотная цапфа; 3 – рычаг поворотной цапфы; 4 и 9 – боковые тяги; 5 – маятниковый рычаг; 6 – сошка; 7 – рулевой механизм; 8 – средняя тяга Поперечная тяга состоит из трех частей: средней тяги 8 и шарнирно соединенных с ней двух боковых тяг 4 и 9. Средняя тяга одним концом со- единена с сошкой 6, а другим – с маятниковым рычагом 5, поворачиваю- щимся вокруг опоры на кузове автомобиля. Шарнир, соединяющий каждую боковую тягу со средней тягой, близко расположен к оси качания колеса. Поэтому тяга не вызывает произвольного поворота колеса при деформации упругого элемента подвески [1]. 4 1.1. Рулевые механизмы Рулевой механизм включает в себя рулевую пару (иногда называют рулевой передачей), размещенную в картере, рулевой вал, рулевую колонку и рулевое колесо. Из условий компоновки рулевого механизма рулевой вал может со- стоять из двух или трех частей, соединяемых карданными шарнирами. К конструкции рулевых механизмов предъявляется ряд специальных требований: высокий КПД в прямом направлении (при передаче усилия от рулево- го колеса) для облегчения управления автомобилем и несколько понижен- ный КПД в обратном направлении для снижения силы толчков, передавае- мых на рулевое колесо от управляемых колес при наезде на неровности; обратимость рулевой пары, чтобы рулевой механизм не препятствовал стабилизации управляемых колес; минимальный зазор в зацеплении элементов рулевой пары в нейтраль- ном положении управляемых колес и в некотором диапазоне углов поворота (беззазорное зацепление) при обязательной возможности регулирования за- зора в процессе эксплуатации; заданный характер изменения передаточного числа рулевого механиз- ма; травмобезопасность рулевого механизма, чтобы при лобовом столкно- вении он не был причиной травмы водителя. Классификация рулевых механизмов представлена на рис. 1.3. Рис. 1.3. Классификация рулевых механизмов 5 1.1.1. Зазоры в зацеплении рулевой пары Оптимальная характеристика зазора в зацеплении рулевой пары пока- зана на рис. 1.4. С ростом угла поворота рулевого колеса зазор должен уве- личиваться, что необходимо для предотвращения заедания рулевой пары после регулирования зацепления при износе, который в основном имеет ме- сто в зоне, соответствующей малым углам поворота рулевого колеса. Зазор в зацеплении рулевой пары должен определяться при отсутствии осевого за- зора рулевого вала. Рис. 1.4. Зазоры в зацеплении рулевой пары Суммарный зазор в рулевом управлении составляют зазоры в рулевом механизме и рулевом приводе, он определяется по углу свободного поворо- та рулевого колеса при нейтральном положении управляемых колес. Повы- шенный суммарный зазор недопустим, так как он может привести к виля- нию управляемых колес и ухудшению устойчивости. В эксплуатации повышенный зазор в рулевом управлении может поя- виться при увеличении зазоров: в подшипниках управляемых колес; в шкворнях или шаровых опорах бесшкворневой подвески; в сочленениях ру- левого привода; в результате слабой затяжки рулевой сошки на валу сошки или слабого крепления картера рулевого механизма; рулевого вала; в зацеп- лении рулевой пары. При установлении причин повышенного зазора в руле- вом управлении и устранении их должна быть соблюдена последователь- ность, соответствующая приведенному выше перечислению этих причин. 6 1.1.2. Шестеренные рулевые механизмы Шестеренные рулевые механизмы выполняют в виде редуктора из зубчатых колес (применяется редко) или в виде пары из шестерни 2 и рейки 3 (рис. 1.5). Реечные рулевые механизмы получают все более широкое при- менение на легковых автомобилях малого (ВАЗ-2108, ЗАЗ-1102 и ВАЗ-1111), среднего и даже большого классов. Достоинствами реечных рулевых механизмов являются простота и компактность конструкции, обеспечивающие им наименьшую стоимость по сравнению с рулевыми механизмами других типов, высокий КПД (η↓РМ = η↑РМ = 0,90…0,95). С реечным рулевым механизмом можно при- менять четырехшарнирный рулевой привод при независимой подвеске ко- лес. Из-за высокого значения обратного КПД такой механизм без усилителя целесообразно устанавливать только на легковых автомобилях малого клас- са, так как в этом случае толчки со стороны дороги, которые передаются на рулевое колесо, в некоторой степени могут поглощаться в результате тре- ния рейки и металлокерамического упора. На легковых автомобилях более высокого класса необходим рулевой усилитель, который поглощает толчки. Рис. 1.5. Реечный рулевой механизм: 1 – рулевой вал; 2 – шестерня; 3 – рейка; 4 – упор 7 1.1.3. Червячные рулевые механизмы Червячные рулевые механизмы применяют как на легковых, так и на грузовых автомобилях и автобусах. Наибольшее распространение получили червячно-роликовые рулевые механизмы (ВАЗ моделей 2105, 2106, 2107 «Москвич-2140», ГАЗ-3102, ГАЗ-53А, УАЗ и др.). Рулевые пары состоят из глобоидного червяка и двух- или трехгребневого ролика. В редких случаях для автомобилей особо малого класса применяют одногребневый ролик. Упрощенная схема червячно-роликовой рулевой пары показана на рис. 1.6, а. Рис. 1.6. Червячно-роликовый рулевой механизм: а – схема; б – конструкция; 1 – вал сошки; 2 – трехгребневый ролик; 3 – глобоидный червяк; 4 – сошка Глобоидный червяк предназначен для увеличения рабочего угла (угла, определяемого зацеплением рулевой пары) поворота вала сошки. Червяк ус- танавливают на радиально-упорных шариковых или конических роликовых подшипниках, а ролик – на шариковых или игольчатых подшипниках в пазу a) б) 8 вала сошки. Иногда и в опорах вала сошки используют подшипники ка- чения. Все это обеспечивает таким механизмам сравнительно высокий КПД: η↓ РМ = 0,85, η↑ РМ = 0,70. Передаточное число рулевых механизмов с двух- и трехгребневым роликом, определяемое отношением числа зубьев червячного колеса (ролик рассматривается как сектор червячного колеса) к числу заходов червяка, практически постоянное. Червяк, как правило, однозаходный. Зазор в заце- плении ролика с червяком переменный, что может быть обеспечено при разных значениях радиусов дуги образующей червяка и траектории роли- ка. Разница этих радиусов позволяет регулировать зазор в зацеплении, т. е. сближать элементы пары, не опасаясь их заклинивания в крайних положе- ниях. Для расширения зоны беззазорного зацепления в ряде конструкций червячно-роликовых пар червяк посажен эксцентрично относительно оси рулевого вала. Пример конструкции рулевого механизма с червячно-роликовой парой показан на рис. 1.6, б. Этот механизм, устанавливаемый на автомобиле ГАЗ- 3102, имеет, как все механизмы такого типа, две регулировки: осевого зазо- ра при помощи прокладок под передней крышкой и зацепления при помощи регулировочного винта, перемещающего вал сошки вместе с роликом, на- чальное смещение оси которого относительно оси червяка составляет 6...6,5 мм. Для обеспечения хорошего контакта ролика с червяком ось ролика рас- положена не перпендикулярно оси вала сошки, а имеет наклон, угол кото- рого близок среднему углу наклона витков червяка. Рис.1.7. Червячно-секторный рулевой механизм: 1 – червяк; 2 – боковой сектор; 3 – рулевой вал; 4 – распределитель усилителя 9 На некоторых грузовых автомобилях «Урал-4320» (рис. 1.7) устанав- ливают червячно-секторные рулевые механизмы с боковым сектором. В рулевой паре этого типа обеспечивается достаточно малое давление на зубья при передаче больших усилий. Передаточное число механизма практически постоянное. Наличие трения скольжения в паре обусловливает сравнительно низ- кий КПД этого рулевого механизма (η↓ РМ = 0,65 – 0,75; η↑ РМ = 0,55 – 0,60). Здесь рулевой вал с червяком установлен на цилиндри- ческих роликовых подшипниках, допускающих некоторое осевое переме- щение в пределах перемещения закрепленного на нем золотника гидроуси- лителя. Вал сошки, выполненный как одно целое с боковым сектором, уста- новлен на игольчатых подшипниках. Зазор в зацеплении червяка с зубчатом сектором переменный, наименьший в среднем положении сектора, что дос- тигается нарезкой зубьев сектора специальной формы. Зацепление регулируют, изменяя толщину прокладок под крышкой, имеющей выступ, упирающийся в торец сектора. 1.1.4. Винтовые рулевые механизмы Винтовые рулевые механизмы могут иметь различное конструктивное исполнение: винторычажные («винт – гайка – рычаг», «качающийся винт и гайка», «винт и качающаяся гайка») и винтореечные. Винторычажные рулевые механизмы в настоящее время применяются редко, так как имеют низкий КПД и компенсировать износ регулировкой невозможно. Широко применяются на автомобилях всех типов (ЗИЛ, Ка- мАЗ, МАЗ, БелАЗ, КАЗ, «Магирус» и др.) винтореечные рулевые механиз- мы, включающие в себя винт 1, шариковую гайку-рейку 2 и сектор 3, вы- полненный за одно целое с валом сошки (рис. 1.8, а). КПД винтореечного механизма высокий в обоих направлениях (η↓ РМ = η↑ РМ = 0,80 – 0,85), поэтому без усилителя, воспринимающего толч- ки со стороны дороги, его целесообразно устанавливать только на легковые автомобили малого класса. Беззазорное зацепление в среднем положении этого механизма осуще- ствляется при помощи следующих мероприятий: профиль канавок винта и гайки эллиптический, образованный двумя дугами несколько большего радиуса, чем радиус шарика, что дает возмож- ность шарику соприкасаться с профилем канавки в двух точках канавки винта и в двух точках канавки гайки. Винты, гайки и шарики рассортировы- вают на несколько групп с последующей селективной сборкой; зубья сектора (рис. 1.8, б) нарезают из центра смещенного относи- тельно оси вала сошки, это позволяет устранять зазор после износа, не опа- 10 саясь заклинивания в крайних положениях, где зуб сектора имеет меньшую толщину, чем в середине сектора. Рис.1.8. Винтореечный рулевой механизм: 1 – винт; 2 – шариковая рейка – гайка; 3 – сектор Зазор в зацеплении сектора и рейки переменный. Регулируют зацепле- ние винтом, перемещающим вал сошки вместе с сектором, зубья которого нарезаны под углом к валу сошки. a) б) 11 На ряде автомобилей (КАЗ, МАЗ, КрАЗ) в настоящее время применя- ют винтореечные рулевые механизмы, в которых зубья нарезаны парал- лельно оси вала сошки, т. е. не имеют клиновидной формы (рис. 1.9). Рис.1.9. Винтореечный рулевой механизм автомобиля КАЗ-4540 12 Зацепление в этих механизмах регулируют поворотом двух вклады- шей 1 и 2 (рис. 1.9.), в которые запрессованы подшипники скольжения, внутренняя поверхность которых эксцентрична. 1.1.5. Кривошипные рулевые механизмы Их применяют сравнительно редко: одношиповые рулевые механизмы (рис. 1.10, а) до середины сороковых годов устанавливали на грузовых ав- томобилях ЗИС. Рис. 1.10. Кривошипные рулевые механизмы Двухшиповые рулевые механизмы (рис. 1.10, б) позволяют увеличить угол поворота вала сошки на угол γ и снизить давление на шип в среднем положении, когда оба шипа находятся в зацеплении с червяком (в крайних положениях один шип выходит из зацепления). При установке шипов на подшипниках (рис. 1.10, в) КПД кривошипного рулевого механизма такой же, как КПД червячно-роликового рулевого механизма. Передаточное число кривошипного рулевого механизма может быть постоянным или перемен- а) б) в) 13 ным – это зависит от способа нарезки червяка. Рулевые механизмы этого типа могут быть регулируемыми. Для этой цели шипы выполняют конус- ными соответственно профилю нарезки червяка. Глубина нарезки различна в средней части и по краям, благодаря чему может быть обеспечен доста- точный диапазон беззазорного зацепления. 1.1.6. Травмобезопасные рулевые механизмы Рулевой механизм может быть причиной серьезной травмы водителя при лобовом столкновении автомобиля с препятствием. Травма может быть нанесена при смятии передней части автомобиля, когда весь рулевой меха- низм перемещается в сторону водителя. Поэтому картер рулевого механиз- ма необходимо располагать в таком месте, где деформация при лобовом столкновении будет наименьшей. Водитель может получить травму также при резком перемещении впе- ред в результате лобового столкновения. Ремни безопасности при слабом их натяжении не предохраняют от столкновения с рулевым колесом или руле- вым валом, когда перемещение вперед составляет 300…400 мм. Для пасса- жиров такое перемещение обычно не приводит к опасным последствиям. По статистике лобовые столкновения автомобилей составляют свыше 50% всех дорожно-транспортных происшествий. Вследствие этого как меж- дународные, так и национальные правила предписывают установку на ав- томобилях травмобезопасных рулевых механизмов. Существуют некоторые нормативы для испытания травмобезопасных рулевых механизмов. Так, при лобовом ударе (удар о бетонный куб при движении со скоростью 14 м/с (50 км/ч) верхний конец рулевого вала не должен перемещаться внутрь салона (кабины) в горизонтальном направле- нии более чем на 127 мм). На специальном манекене регистрируется вели- чина усилия в горизонтальном направлении на уровне груди манекена при скорости 5,5 м/с (24 км/ч). Это усилие не должно превосходить 11,34 кН. Существуют травмобезопасные рулевые механизмы различных конст- рукций. Основное требование к ним – поглощение энергии удара, а следо- вательно, снижение усилия, наносящего травму водителю. Первоначально для придания рулевым механизмам травмобезопасных свойств устанавливали рулевое колесо с утопленной ступицей и с двумя спицами, что позволило значительно снизить тяжесть наносимых повреж- дений при ударе. В дальнейшем, кроме этого, стали устанавливать специ- альный энергопоглощающий элемент. На рис. 1.11 приведен рулевой механизм автомобиля ВАЗ-2121. Здесь рулевой вал состоит из трех частей, связанных карданными шарнирами. При лобовом столкновении, когда передняя часть автомобиля деформиру- 14 ется, рулевой вал складывается, при этом перемещение верхней части руле- вого механизма внутрь салона незначительно. Перемещение рулевого меха- низма сопровождается некоторым поглощением энергии удара при деформации кронштейна крепления рулевого вала. Особенность крепления кронштейна заключается в том, что два из четырех болтов (передние) крепят кронштейн через пла- стинчатые шайбы, которые при ударе деформируются и проваливаются че- рез прямоугольные отверстия кронштейна, а сам кронштейн деформирует- ся, поворачиваясь относительно фиксированных точек крепления. Рис. 1.11. Травмобезопасный рулевой механизм автомобиля ВАЗ-2121 На автомобиле ГАЗ-3102 энергопоглощающий элемент травмобезо- пасного рулевого механизма представляет собой резиновую муфту, уста- новленную между верхней и нижней частями рулевого вала (рис. 1.12). В ряде зарубежных конструкций энергопоглощающим элементом ру- левого механизма служит сильфон, соединяющий рулевое колесо с рулевым валом (рис. 1.13, а) или сам рулевой вал, в верхней части представляющий собой перфорированную трубу (рис. 1.13, б). На рисунке показаны последо- вательно фазы деформации перфорированной трубы и максимальная де- формация, которая для этой конструкции значительна. 15 Рис. 1.12. Травмобезопасный рулевой механизм автомобиля ГАЗ-3102: 1 – фланец; 2 – предохранительная пластина; 3 – резиновая муфта Некоторое применение нашли энергопоглощающие элементы рулевых механизмов, в которых две части рулевого вала соединяются при помощи нескольких продольных пластин, привариваемых к концам соединяемых валов и деформирующихся при ударе. Такое энергопоглощающее устройст- во носит название «японский фонарик». 16 Рис. 1.13. Травмобезопасные рулевые механизмы: а – с энергопоглощающим сильфоном; б – с перфорированным труб- чатым рулевым валом 1.2. Рулевые приводы К рулевому приводу предъявляют следующие требования: правильное соотношение углов поворота колес, отсутствие автоколебаний управляемых колес, а также самопроизвольного поворота колес при колебаниях автомо- биля на подвеске. Рулевой привод включает рулевую трапецию, рычаги и тяги, связы- вающие рулевой механизм с рулевой трапецией, а также рулевой усилитель, устанавливаемый на ряде автомобилей. 1.2.1. Рулевая трапеция В зависимости от компоновочных возможностей рулевую трапецию располагают перед передней осью (передняя рулевая трапеция) или за ней (задняя рулевая трапеция). При зависимой подвеске колес применяют тра- пеции с цельной поперечной тягой; при независимой подвеске – только тра- пеции с расчлененной поперечной тягой, что необходимо для предотвраще- ния самопроизвольного поворота управляемых колес при колебаниях авто- мобиля на подвеске. 17 1.2.2. Поперечная тяга Для ее изготовления обычно применяют бесшовную трубу, на резьбо- вые концы которой навертывают наконечники с шаровыми пальцами. Дли- на поперечной тяги должна быть регулируемой, так как она определяет схождение колес. При зависимой подвеске, когда применяется неразрезная трапеция, регулирование выполняют поворотом поперечной тяги относи- тельно наконечников (при освобождении стопорных гаек). Так как резьба, нарезанная на концах тяги, имеет разное направление, то поворот тяги вы- зывает изменение расстояния между шарнирами поперечной тяги. Часто шаг резьбы на разных концах тяги делают неодинаковым для более точной регулировки. Наличие зазора в шарнирах поперечной тяги недопустимо, поэтому предпочтительно применение шарниров с автоматическим регулированием зазора в процессе изнашивания, что возможно, когда усилие пружины на- правлено по оси шарового пальца 2 (рис. 1.14, а). На рис. 1.14, б показан шарнир поперечной тяги (автомобили МАЗ), где зазор, образовавшийся в результате изнашивания, выбирают, вращая гайку 3, сжимающую пружину, для чего необходимо снять наконечник тяги. 1.2.3. Продольная тяга Связывающая сошку с поворотным рычагом тяга применяется глав- ным образом при зависимой подвеске. Кинематические перемещения про- дольной тяги и подвески должны быть согласованы, чтобы исключить са- мопроизвольный поворот управляемых колес при деформации упругого элемента подвески. Компоновка, показанная на рис. 1.15, а, не обеспечивает необходимого согласования траекторий переднего конца продольной тяги 2 и центра колеса. Поэтому при вертикальных и угловых колебаниях автомо- биля возникает «рыскание» управляемых колес. Сравнительно хорошее согласование может быть получено при распо- ложении рулевого механизма перед передней осью (рис. 1.15, б) или при расположении рулевого механизма за передней осью и передним располо- жением серьги листовой рессоры 3. Однако при переднем расположении серьги продольные силы, возникающие при наезде передних колес на пре- пятствие, в большей степени передаются на раму автомобиля. Шаровые шарниры (рис. 1.14, в), размещенные по концам тяги, поджимаются жест- кими пружинами 4, при- 18 Рис. 1.14. Конструкции шарниров рулевых тяг чем расположение шарниров и пружин дает возможность несколько амор- тизировать удары, воспринимаемые как левым, так и правым управляемыми колесами [2]. Рис. 1.15. Продольные рулевые тяги: а и б – схемы расположения 19 2. Требования и методы проверки рулевого управления Требования и методы проверки рулевого управления регламентируют- ся ГОСТ Р 51709-2001 «Автотранспортные средства. Требования безопас- ности к техническому состоянию и методы проверки». Этот ГОСТ вступил в действие с 1 января 2002 г., сменив известный ГОСТ 25478-91 с тем же названием. В ГОСТ Р 51709-2001 произошли очень серьезные изменения, касающиеся рулевого управления. Основным оборудованием, необходимым для проверки рулевого управления, является прибор для определения суммарного люфта в рулевом управлении – люфтомер. Согласно ГОСТ 25478-91 суммарным люфтом в рулевом управлении назывался суммарный угол, на который поворачивает- ся рулевое колесо автомобиля под действием поочередно приложенных к нему противоположно направленных регламентированных усилий при не- подвижных управляемых колесах. Таким образом, все люфтомеры имели угломерное устройство, позволяющее измерять угол поворота рулевого ко- леса, и динамометрическое устройство, позволяющее прикладывать к руле- вому колесу необходимое регламентное усилие при измерении. По ряду причин требование к люфтомерам в ГОСТ Р 51709-2001 было изменено. В настоящее время необходимо для измерения пользоваться такими люфтомерами, которые позволяют фиксировать одно- временно угол поворота рулевого колеса и начало поворота управляемых колес. Естественно, необходимость применения в настоящее время динамо- метрических устройств в люфтомерах отпадает за счет применения уст- ройств, позволяющих фиксировать начало поворота управляемых колес. В связи с этим изменилось и само значение термина «суммарный люфт в ру- левом управлении». Согласно ГОСТ Р 51709-2001, суммарным люфтом в рулевом управлении называется угол поворота рулевого колеса от положе- ния, соответствующего началу поворота управляемых колес АТС в одну сторону, до положения, соответствующего началу их поворота в противоположную сторону. Ниже в табл. 2.1 представлены основные требования к рулевому управлению и методы его проверки. 20 Таблица 2.1 Требования Методы проверки 1.Изменение усилия при повороте ру- левого колеса должно быть плавным во всем диапазоне угла его поворота 2.Максимальный поворот рулевого колеса должен ограничиваться только устройствами, предусмотренными конструкцией АТС Проверяют на неподвижном АТС при работающем двигателе посред- ством поочередного поворота руле- вого колеса на максимальный угол в каждую сторону 3.Самопроизвольный поворот рулево- го колеса с усилителем рулевого управления от нейтрального положе- ния при неподвижном состоянии АТС и работающем двигателе не допуска- ется Проверяют наблюдением за поло- жением рулевого колеса на непод- вижном АТС с усилителем рулево- го управления после установки ру- левого колеса в положение, при- мерно соответствующее прямоли- нейному движению и пуска двига- теля 4 .Суммарный люфт в рулевом управ- лении не должен превышать предель- ных значений, указанных изготовите- лем АТС в эксплуатационной доку- ментации, или, если такие значения изготовителем не указаны, следующих предельных допустимых значений: легковые автомобили и создан- ные на базе их агрегатов грузовые и автобусы – 10 0 автобусы – 20 0 грузовые – 25 0 Проверяют на неподвижном АТС с использованием приборов для оп- ределения суммарного люфта в ру- левом управлении, фиксирующих угол поворота рулевого колеса и начало поворота управляемых ко- лес. Управляемые колеса должны быть предварительно приведены в положение, примерно соответст- вующее прямолинейному движе- нию, а двигатель АТС, оборудован- ного усилителем, должен работать. Рулевое колесо поворачивают до положения, соответствующего началу поворота управляемых ко- лес АТС в одну сторону, а затем – в другую сторону до положения, со- ответствующего началу поворота 21 Продолжение табл. 2.1 управляемых колес. При этом из- меряют угол между указанными крайними положениями рулевого колеса, который является суммар- ным люфтом в рулевом управле- нии 5. Не допускается подвижность рулевой колонки в плоскостях, проходящих че- рез ее ось, рулевого колеса в осевом на- правлении, картера рулевого механиз- ма, деталей рулевого привода относи- тельно друг друга или опорной поверх- ности. Резьбовые соединения должны быть затянуты и зафиксированы. Люфт в соединениях рычагов поворотных цапф и шарниров рулевых тяг не до- пускается. Устройство фиксации поло- жения рулевой колонки с регулируе- мым положением рулевого колеса должно быть работоспособно Проверяют органолептически на неподвижном АТС при нерабо- тающем двигателе путем прило- жения нагрузок к узлам рулевого управления и простукивания резьбовых соединений. Допуска- ется визуальная проверка состоя- ния шарнирных соединений на специальных стендах для провер- ки рулевого привода 6. Применение в рулевом механизме и рулевом приводе деталей со следами остаточной деформации, с трещинами и другими дефектами не допускается Проверяют визуально на непод- вижном АТС 7. Натяжение ремня привода насоса усилителя рулевого управления и уро- вень рабочей жидкости в его резервуаре должны соответствовать требованиям, установленным изготовителем АТС в эксплуатационной документации. Под- текание рабочей жидкости в гидросис- теме усилителя не допускается Проверяют измерением натяже- ния ремня привода насоса усили- теля рулевого управления на не- подвижном АТС с помощью спе- циальных приборов для одновре- менного контроля усилия и пере- мещения или с использованием линейки и динамометра с макси- мальной погрешностью не более 7% 22 3. Устройство и принцип действия оборудования, применяемого в лабораторной работе Студенты должны научиться измерять суммарный люфт в рулевом управлении, используя люфтомеры, фиксирующие начало поворота управ- ляемых колес, и люфтомеры-динамометры. Люфтомер, фиксирующий поворот управляемых колес, состоит из двух основных элементов: угломерного устройства и датчика поворота управляемых колес. Пользоваться им необходимо согласно заводской инст- рукции и указаниям преподавателя. Для измерения суммарного люфта рулевого управления в лаборатории имеется механический универсальный люфтомер-динамометр. На рис. 3.1 представлен общий вид прибора. Люфтомер состоит из верхнего 1 и нижнего 2 раздвижных кронштей- нов, приставляемых к ободу рулевого колеса упорами 3; разрезной каретки 4, стягивающих направляющие стержни 5 кронштейнов 1 и 2 с помощью зажима; угломерной шкалы 7, устанавливаемой на оси зажима 6 с помощью поворота и самоторможения при снятии усилия за счет фрикционной, рези- новой шайбы 8; резиновой нити 9, натягиваемой, с помощью присоса 10, от зажима 6 к лобовому стеклу автомобиля и играющей роль указательной «стрелки» угломерной шкалы, и нагрузочного устройства, представляющего собой пружинный динамометр 11 двухстороннего действия. Каретка 4 с осью поворота угломерной шкалы 7 выставляется в центр поворота рулевого колеса путем обеспечения одинаковых вылетов («а» и «в») стержней 5 относительно каретки. Этим обеспечивается неподвиж- ность «стрелки» при повороте рулевого колеса и правильность измерения люфта. Динамометр 11 устанавливается на нижнем кронштейне 2 люфтомера с помощью кронштейна 13, который с помощью винтов 16 закрепляется на пальце 17 после регулировки в положение, при котором при установке люфтомера на ободе рулевого колеса приложенное к нагрузочному устрой- ству усилие пришлось бы на середину сечения обода. Метод измерения суммарного люфта заключается в выявлении угла поворота рулевого колеса по угловой шкале люфтомера, между двумя фик- сированными положениями, определяемыми приложением к нагрузочному устройству, поочередно в обоих направлениях, одинаковых, регламенти- руемых в зависимости от собственной массы автомобиля, приходящейся на управляемые колеса, усилий. Зависимость усилий от собственной массы ав- томобиля, приходящейся на управляемые колеса, приведена в табл. 3.1 23 Рис. 3.1. Общий вид люфтомера: 1, 2 – верхний и нижний кронштейны; 3 – упор кронштейна; 4 – ка- ретка; 5 – стержень направляющий; 6 – зажим; 7 – шкала угломерная; 8 – шайба фрикционная; 9 – нить резиновая; 10 – присос; 11 – динамометр; 12 – «безмен»; 13 и 14 – кронштейны динамометра или «безмена»; 15 – цапфа ; 16 – винт стопорный; 17 – палец установочный; 18– кольцо прижимное; 19 – вороток; 20 – упор шкалы Таблица 3.1 Масса автомобиля приходя- щаяся на управляемые колеса; т Усилие нагрузочного устрой- ства, Н (кгс) до1,6 7,35 (0,75) свыше 1,6 до 3,86 9,8 (1,00) свыше 3,86 12,30 (1,25) При возникновении в отдельных случаях поворота управляемых колес при приложении регламентируемого усилия на рулевом колесе фиксиро- ванные положения рулевого колеса должны соответствовать моментам на- чала поворота управляемых колес, определяемых визуально. 24 4. Порядок выполнения работы 1) Установить управляемые колеса рулем в нейтральное положение. 2) Ослабив зажимы 6 люфтомера, раздвинуть кронштейны 1 и 2 до размера, визуально соответствующего диаметру рулевого колеса. 3) Установить люфтомер на рулевом колесе, приставив кронштейны к ободу рулевого колеса до плотного соприкосновения с ним, в том числе и упорами 3, и поджав кольцами 18 и воротками 19. 4) Проверить и при необходимости отрегулировать положение дина- мометра 11 или цапфы 15, так чтобы они располагались визуально посере- дине сечения обода рулевого колеса. 5) Выставить каретку 4 с угломерной шкалой 7 в центр рулевого коле- са, обеспечив равенство вылетов (а=в) стержней 5 относительно каретки 4. 6) Протянуть «стрелку» 9 к лобовому стеклу автомобиля и закрепить присосом 10. «Стрелка» при этом должна быть расположена примерно в центре угломерной шкалы, параллельно и как можно ближе к ней. 7) Нажимая на головку динамометра 11 справа, медленно повернуть рулевое колесо по часовой стрелке до момента достижения соответствую- щего регламентированного усилия (см. табл. 2.1), т.е. до совпадения соот- ветствующей риски (1, 2 или 3 см. рис. 4.1) указателя 4 динамометра с кромкой 5 крышки 6 корпуса. В этом положении, не трогая рулевого колеса, повернуть шкалу 7 до совпадения нулевого деления с нитью. Рис. 4.1. Вид динамометра (правая часть): 1, 2 и 3 – риски регламентируемых усилий, соответственно: 0, 75, 1,0 и 1,25 кг; 4 – указатель; 5 – кромка крышки; 6 – крышка; 7 – шпилька; 8 – чашка пружины; 9 – пружина; 10 – головка; 11 – корпус 25 8) Нажимая на головку динамометра 11 слева, медленно повернуть ру- левое колесо против часовой стрелки до достижения регламентируемого усилия, так же как и в первом случае. 9) По положению нити относительно угломерной шкалы 7 определить значение суммарного люфта рулевого управления. Окончательный резуль- тат уточнить по результатам двух или более измерений и уточненное значе- ние сравнить с допустимым (см. раздел 2). Результаты занести в протокол. 10) Дальнейшую проверку рулевого управления произвести визуально и органолептически согласно методике, приведенной во втором разделе на- стоящих методических указаний. 11) При обнаружении неисправностей в рулевом управлении, которые могут быть устранены регулировками, следует выполнить необходимые ре- гулировочные работы. Порядок регулировок большинства рулевых меха- низмов разбирается в разделе 1 данных методических указаний. 5. Требования к отчету Отчет должен содержать протокол испытаний с результатами измере- ний суммарного люфта в рулевом управлении, данные по органолептиче- ским и визуальным проверкам элементов рулевого управления. При напи- сании отчета необходимо придерживаться такой же последовательности из- ложения, как в табл. 2.1, при этом результаты работы лучше представить в табличной форме. Если в процессе выполнения работы выполнялись какие- то регулировки, то необходимо подробно описать это. По результатам про- ведения работы в конце отчета необходимо сделать выводы. Отчет выпол- няется на стандартных листах бумаги формата А-4 согласно общим требо- ваниям к оформлению текстовой технической документации. 6. Контрольные вопросы 1. Что такое суммарный люфт в рулевом управлении согласно ГОСТ Р 51709–2001? 2. Порядок измерения суммарного люфта в рулевом управлении со- гласно ГОСТ Р 51709–2001 и ГОСТ 25478–91. 3. Принцип действия люфтомеров, фиксирующих поворот управляе- мых колес, и люфтомеров-динамометров. 4. Современные требования, предъявляемые к рулевым управлениям и методы их проверки. 5. Особенности регулировки реечных рулевых механизмов. 26 6. Особенности регулировки червячных рулевых механизмов. 7. Особенности регулировки винтовых рулевых механизмов. Список рекомендуемой литературы 1. Автомобиль: Основы конструкции: Учеб. для вузов по специ- альности «Автомобили и автомобильное хозяйство» / Н.Н. Вишняков, В.К. Вахламов, А.Н. Нарбут, И.С. Шлиппе, А.Н. Островцев. – 2-е изд., перераб. и доп. – М.: Машиностроение, 1986. – 304с. 2. Осепчугов В.В. Автомобиль: Анализ конструкций, элементы расчета: Учеб. для студентов вузов по специальности «Автомобили и автомобильное хозяйство»/В.В. Осепчугов, А.К. Фрумкин. – М.: Ма- шиностроение, 1989. – 304 с. 3. Михайловский Е.В. Устройство автомобиля: Учеб. для вузов / Е.В. Михайловский, К.Б. Серебряков, Е.Я. Тур. – 5-е изд., перераб. и доп. – М.: Машиностроение, 1985. – 352с. 4. Техническая эксплуатация автомобилей: Учеб. для вузов. – 4-е изд., перераб. и доп./Под ред. Е.С. Кузнецова. – М.: Наука, 2001. – 535с. 5. ГОСТ Р 51709–2001. Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки. – М.: Гос- стандарт России, 2001. – 26с. 27 СОДЕРЖАНИЕ: 1. Назначение, принцип действия и особенности конструкций рулевых управлений, применяемых на отечественных и импортных автомобилях 1 1.1. Рулевые механизмы ................................................................................... 4 1.1.1. Зазоры в зацеплении рулевой пары.......................................................... 5 1.1.2. Шестеренные рулевые механизмы......................................................... 6 1.1.3. Червячные рулевые механизмы................................................................ 7 1.1.4. Винтовые рулевые механизмы ................................................................. 9 1.1.5. Кривошипные рулевые механизмы........................................................ 12 1.1.6. Травмобезопасные рулевые механизмы ................................................ 13 1.2. Рулевые приводы...................................................................................... 16 1.2.1. Рулевая трапеция ..................................................................................... 16 1.2.2. Поперечная тяга....................................................................................... 17 1.2.3. Продольная тяга....................................................................................... 17 2. Требования и методы проверки рулевого управления ........................ 19 3. Устройство и принцип действия оборудования, применяемого в лабораторной работе............................................................................... 22 4. Порядок выполнения работы..................................................................... 24 5. Требования к отчету .................................................................................... 25 6. Контрольные вопросы................................................................................. 26 7. Список рекомендуемой литературы..............................................27 28 Составители Александр Иванович Подгорный Дмитрий Владимирович Цыганков ДИАГНОСТИРОВАНИЕ И РЕГУЛИРОВКА РУЛЕВОГО УПРАВЛЕНИЯ АВТОТРАНСПОРТНЫХ СРЕДСТВ Методические указания к лабораторной работе по курсам «Техническая эксплуатация транспортных средств» и «Техническая диагностика на транспорте» для студентов специальностей 150200 «Автомобили и автомобильное хозяйство» и 240400 «Организация и безопасность дорожного движения» дневной формы обучения Редактор З.М. Савина ИД № 06536 от 16.01.02 Подписано в печать 01.11.02. Формат 60х84/16. Бумага офсетная. Отпечатано на ризографе. Уч.-изд. л. 2,00. Тираж 280 экз. Заказ ГУ Кузбасский государственный технический университет. 650026, Кемерово, ул. Весенняя, 28. Типография ГУ Кузбасский государственный технический университет. 650099, Кемерово, ул. Д. Бедного, 4А. |