Методические указания в сжатой форме знакомят студентов с основными теоретическими положениями, относящимися к данной лабораторной работе или группе лабораторных работ со схожей тематикой,
Скачать 1.55 Mb.
|
Выражение результатов измерений и расчетовДанные экспериментов и полученные их них значения различных величин обычно представляют в виде таблиц, графиков или уравнений. Экспериментальные данные должны быть записаны с максимально возможной точностью. При использовании мерной градуированной посуды (пипеток, бюреток), нецифрового измерительного оборудования (термометров, рН-метров и др.) данные регистрируют, как правило, с точностью до «цена деления пополам». В таблицах должны быть представлены численные значения с тем числом значащих цифр, которые отвечают погрешности эксперимента. Результаты вычислений следует округлить так, чтобы с одной стороны, не потерять при расчетах точности измерений, а с другой стороны – не приводить лишних цифр расчета, чтобы не создавать ложного представления о высокой точности эксперимента. Поэтому, прежде чем округлять полученные результаты, следует оценить погрешность полученной величины и затем округлить числа так, чтобы последняя цифра (включая ноль) в числе была первой сомнительной цифрой, а предпоследняя отвечала погрешности измерения. При определении систематической погрешности измерительного оборудования используют его класс, указывающий погрешность в процентах. При отсутствии класса погрешность измерительного оборудования определяют как цену одного деления шкалы. Абсолютную и относительную погрешности обычно округляют до первой или второй значащей цифры. Точность измерения тем больше, чем меньше относительная погрешность, т.е. абсолютная погрешность, отнесенная к самой измеряемой величине. Результаты вычислений записывают следующим образом: , где хi – измеренная величина; – абсолютная погрешность. . где хист. – истинное значение измеряемой величины; – относительная погрешность, т.е. абсолютная погрешность, отнесенная к самой измеряемой величине; – среднеарифметическое значение, которое вычисляется по уравнению: , в котором n – число измерений;si – величина среднеквадратической погрешности, вычисляемой по уравнению: . При ограниченном числе измерений необходимо оценивать вероятность отклонения измеренного и среднего значений от истинного значения, что можно выполнить при помощи понятия среднеквадратического отклонения измеряемой величины . Чем меньше среднеквадратическое отклонение, тем измеренное или среднее значение ближе к истинной величине. Величина среднеквадратического отклонения связана со среднеквадратической погрешностью уравнением: , где t – коэффициент Стьюдента, который берется для заданного значения доверительной вероятности. В большинстве случаев при выполнении физико-химических измерений величину доверительной вероятности принимают равной 0,95, для которой . В зависимости от числа измерений коэффициент Стьюдента имеет следующие значения:
Число цифр после запятой и число нулей в больших числах должно быть одинаковым у значения и его абсолютной погрешности. Например, расчет показал, что при доверительной вероятности 0,95 относительная погрешность = 1,4512 % 1,5 %. При такой погрешности значения, полученные расчетным путем, следует округлять и записывать следующим образом:
При составлении таблиц все результаты, которые изменяются незначительно или подлежат усреднению, следует записывать единообразно, т.е. с одинаковым числом значащих цифр и одинаковым порядком. В названиях всех граф таблицы должны быть указаны величины и их единицы. Одинаковый порядок значений величин данной графы лучше указывать в шапке таблицы (см. пример – таблицу 1). Таблица 1 Результаты анализа содержания кальция в пробах воды (Va = 100 мл)
Графическое изображение экспериментальных и расчетных данных отличается большей наглядностью, чем табличное. Оно позволяет выяснить тенденции изменения функции, заметить экстремальные точки, перегибы, выполнить графическое дифференцирование и интегрирование функций, не интересуясь математическим видом соответствующей зависимости. Недостатком графиков, по сравнению с таблицами, является обычно большая потеря точности при получении с него численных значений аргумента и/или функции. По оси абсцисс обычно откладывают значения независимой переменной, которая изменяется по воле исследователя: время, температура, давление, другие регулируемые параметры состояния системы. По оси ординат обычно откладывается функция от независимой переменной. Если есть еще и вторая независимая переменная, влияющая на функциональную зависимость, на одном чертеже допустимо построение нескольких кривых. Размер графиков при составлении отчета по лабораторной работе – примерно 10х10 или 15х15 см. Масштаб следует выбирать так, чтобы координаты любой точки могли быть определены легко и быстро, желательно только путем деления на 2·10n. Масштаб по осям координат следует выбирать таким образом, чтобы графическая зависимость находилась примерно по середине поля построения графика и занимала большую часть графического пространства. Оси следует подписать и указать единицы измерения величин. После того, как выбран масштаб графика, на него наносят экспериментальные точки. Если для экспериментальных точек определена погрешность, то ее тоже нужно отразить на графике. В большинстве требуется линеаризовать зависимость, т.е. вместо сложной криволинейной зависимости от аргумента получить прямолинейную зависимость, произведя замену функции и аргумента на некоторые их производные (logx, 1/x и др.). Такие графики удобнее криволинейных тем, что позволяют легко и быстро производить интерполяцию (определение значения функции между ее измеренными значениями), экстраполяцию (определение значения функции за пределами измерений), графическое дифференцирование и интегрирование, находить аппроксимационные уравнения. Если же линеаризация зависимости невозможна или по какой-либо причине нежелательна, между измеренными точками проводят плавную кривую. При построении любых графических зависимостей следует стремиться к тому, чтобы прямая или кривая проходила через большинство точек с учетом погрешности, а выпадающие точки находились равномерно по обе стороны зависимости. Толщина линий должна быть такой, чтобы она не ухудшала точности измерений и расчетов. Обычно при физико-химических измерениях вид функциональной зависимости известен заранее из теоретических соображений. Соответственно задача исследователя сводится к определению коэффициентов уравнения и определению среднеквадратического отклонения экспериментальных данных от полученных зависимостей. Проще всего данная задача решается при линейной зависимости между функцией и аргументом. В этом случае необходимо найти коэффициенты a и b уравнения y = ax + b. Простейший способ нахождения этих коэффициентов – графический, т.е. построение соответствующей прямой. Тангенс угла наклона прямолинейной зависимости соответствует a, а точка пересечения с осью ординат соответствует b. Однако b чаще определяют простой подстановкой найденной величины a в уравнение прямой зависимости. Тангенс угла наклона прямой находят как соотношение длин противолежащего и прилежащего катетов. Длину катета определяют как разность значений в масштабе оси координат. Зависимость можно обработать при помощи Mikrosoft Exel. Для этого 1) выделить на графике диапазон данных; 2) в меню «диаграмма» выбрать «добавить линию тренда»; 3) выбрать тип линии тренда «линейный»; 4) открыть вкладку «параметры»; 5) отметить позицию «показывать уравнение на диаграмме»; 6) щелкнуть кнопку «ОК». Пример построения и обработки графических зависимостей см. на рис. 1. Рис. 1. Пример построения графика и определения величины тангенса угла наклона прямолинейной зависимости. |