Главная страница

применение молекулярной генетики. Молекулярная генетика


Скачать 17.32 Kb.
НазваниеМолекулярная генетика
Дата07.06.2022
Размер17.32 Kb.
Формат файлаdocx
Имя файлаприменение молекулярной генетики.docx
ТипДокументы
#576427

Молекулярная генетика, раздел генетики и молекулярной биологии, ставящий целью познание материальных основ наследственности и изменчивостиживых существ путём исследования протекающих на субклеточном, молекулярном уровне процессов передачи, реализации и изменения генетической информации, а также способа её хранения.

  М. г. выделилась в самостоятельное направление в 40-х гг. 20 в. в связи с внедрением в биологию новых физических и химических методов, что позволило гораздо глубже и точнее, чем раньше, изучать строение и функции отдельных компонентов клетки и всю клетку как единую систему. С новыми методами в биологию пришли новые идеи физики и химии, математики и кибернетики. Большую роль в быстром развитии М. г. сыграло перенесение центра тяжести генетических исследований с высших организмов (эукариотов) — основных объектов классической генетики, на низшие (прокариоты) — бактерии и многие другие микроорганизмы, а также вирусы. Преимущества использования более простых форм жизни для решения генетических проблем заключаются в быстрой смене поколений у этих форм и возможности изучать одновременно огромное число особей; благодаря этому сильно возрастает разрешающая способность генетического анализа и повышается его точность. Кроме того, сравнительная простота организации бактерий и особенно вирусов облегчает выяснение молекулярной природы генетических явлений. Высказываемое иногда мнение о тождестве М. г. и генетики микроорганизмов ошибочно. М. г. изучает молекулярные основы генетических процессов как у низших, так и у высших организмов и не включает частной генетики прокариотов, занимающей видное место в генетике микроорганизмов.

   Одно из главных достижений М. г. — выяснение химической природы гена. Классическая генетика установила, что все наследственные потенции организмов (их генетическая информация) определяются дискретными единицами наследственности — генами, локализованными главным образом в хромосомах клеточного ядра, а также в некоторых органеллах цитоплазмы (пластидахмитохондриях и др.). Однако методы классической генетики не позволяли вскрыть химическую природу генов, что было отмечено ещё в 1928 выдающимся советским биологом Н. К. Кольцовым, обосновавшим необходимость изучения механизма наследственности на молекулярном уровне.

Установление тонкого строения генов позволило значительно углубить представление о механизме генетической рекомбинации и закономерностях возникновения генных мутаций, оно способствовало также выяснению механизма функционирования генов.

   Т. о., М. г. уже выяснила в принципе вопрос о том, как записана и хранится генетическая информация, получаемая потомками от родителей, хотя расшифровка конкретного содержания этой информации для каждого отдельного гена требует ещё огромной работы.

  Установление структуры ДНК открыло возможности для экспериментального исследования биосинтеза молекул ДНК — их репликации. Этот процесс лежит в основе передачи генетической информации от клетки к клетке и от поколения к поколению, т. е. определяет относительное постоянство генов.

  М. г. достигла выдающегося успеха и в решении важнейшей задачи, сформулированной ещё классической генетикой, — каким образом ген определяет признак, или как происходит реализация генетической информации.

  У многоклеточных организмов генетическая регуляция синтеза белка сложнее и пока изучена недостаточно. Однако ясно, что и здесь большую роль играет обратная связь, подобная описанной у бактерий для системы эффектор — регуляторный белок — оператор, причём сигнальными веществами в ряде случаев служат гормоны.

  С развитием М. г. более глубоким стало понимание мутационного процесса, т. е. изменения генетической информации. Было показано, что мутации представляют собой либо замены отдельных нуклеотидов, либо вставки или выпадения нуклеотидов в молекуле ДНК.

  М. г. своими замечательными открытиями оказала плодотворное влияние на все биологические науки. Она явилась той основой, на которой выросла молекулярная биология, значительно ускорила прогресс биохимии, биофизики, цитологии, микробиологии, вирусологии, биологии развития, открыла новые подходы к пониманию происхождения жизни и эволюции органического мира. Вместе с тем М. г., позволившая глубоко проникнуть в природу важнейших жизненных процессов и успешно продолжающая их исследование, отнюдь не претендует на решение многих, в том числе и генетических, проблем, касающихся целостного организма, а тем более совокупностей организмов — популяций, видов, биоценозов и т. д., где преобладают закономерности, изучение которых требует иных методов, чем те, какие использует М. г.

  Достижения М. г., внёсшие огромный теоретический вклад в общую биологию, несомненно будут широко использованы в практике сельского хозяйства и медицины (т. н. генная инженерия путём замены вредных генов полезными, в том числе искусственно синтезированными; управление мутационным процессом; борьба с вирусными болезнями и злокачественными опухолями путём вмешательства в процессы репликации нуклеиновых кислот и опухолеродных вирусов; управление развитием организмов посредством воздействия на генетические механизмы синтеза белка и т. д.).

У наиболее изученных в генетическом отношении видов бактерий удаётся получать мутации любого гена, лишать клетку какого-либо гена или привносить в неё желаемый ген извне, регулировать функции многих генов.

Уже сейчас данные М. г. используют при создании медикаментов, применяемых для профилактики и лечения новообразований, лейкозов, вирусных инфекций, лучевых поражений, при изыскании новых мутагенов и т. д.

 В медицине появился новый способ диагностики генетических заболеваний, подбора максимально подходящего донора и определения индивидуальной непереносимости к лекарствам - генетическое типирование. 
Для диагностики ген.заболеваний создают специальные чипы с кусочками ДНК болезней и если у человека есть больной ген, то он будет комплементарен этому кусочку и присоединится. На сегодняшний день можно сдать ДНК-тест более чем для 4500 генетических болезней. 
На помощь врачам пришел новый способ лечения таких болезней - лечение вирусами! 
Это происходит так: 
1)из больного человека берут биоматериал и внедряют в него вирус несущий здоровые гены и не способный к размножению, 2) вирус встраивает эти гены в клетки человека 3) и затем клетки отправляют обратно в организм. Этот способ не всегда полностью лечит заболевание, но может избавить больного от приема лекарств. 
Почти по такому же принципу ученые создали первый искусственный организм - бактерию Mycoplasma. Ученые удалили из этой бактерии родной геном и вставили цепочку состоящую из миллиона нуклеотидов , которую синтезировали сами. 

В середине 20 века ученые нашли бессмертную женщину по имени Геннриетта Лакс. Точнее ее клетки были бессмертны (они могли бесконечно делиться и не умирали при апоптозе). Геннриетта заболела раком, и её бессмертные здоровые клетки превратились в опухолевые, именно по этой причине она умерла. Тогда у нее взяли раковые клетки и теперь в каждой крупной лаборатории мира есть Бессмертные клетки HeLa. 


написать администратору сайта