полуавтоматическая сварка. Н. Г. Славянов на Пермских пушечных заводах, начальником которых он являлся, организовал значительный по тем временам электросварочный цех и выполнявший большое количество сварочных работ с искусством заслуживающий
Скачать 83.25 Kb.
|
Технологические мероприятия. Они, прежде всего, предусматривают выбор правильного теплового режима сварки в части нагрева основного металла, а также выбор правильной последовательности наложения швов. Порядок должен быть таким, чтобы свариваемые детали находились в свободном состоянии, особенно это относится к стыковым швам. В первую очередь свариваются стыковые швы балок, а затем угловые. При сварке цилиндрических резервуаров или полотнищ вначале сваривают стыки каждого пояса, а затем – пояса между собой. Сварку следует производить напроход от середины изделия к краям, но ни в коем случае не варить от краев к его середине. Нельзя ставить прихватки на пересечении швов. Важное условие в работе – уменьшение зазоров во избежание поперечных усадок и выполнение швов больших сечений в несколько слоев с применением «горки» или «каскадного» метода. Чем выше температура окружающей среды, тем равномернее и медленнее происходит остывание шва. Сварка на морозе, сильном ветре, сквозняке часто приводит к трещинам. Место сварки должно быть защищено от атмосферных осадков, холода и сквозняков. Применение обратных деформаций. Перед сваркой изделие подвергается выгибу. Обратноступенчатая сварка. Проковка уплотняет шов, в результате чего уменьшает действие усадки шва. Последний слой его проковывать не рекомендуется, чтобы не вызвать трещину на поверхности шва. 1.11 Искусственное охлаждение разогретого металла Сварка деталей в закрепленном положении Точность сборки. Она гарантирует равномерное сечение швов и уменьшает напряжения. Предварительный нагрев, глубокий провар корня шва и другие перечисленные мероприятия способствуют уменьшению напряжения и деформаций при сварке, гарантируют предотвращение трещин в процессе сварки и эксплуатации. После сварки деформированные детали правят. Применяются два вида правки – холодная и горячая. Холодная правка производится домкратами, прессом, кувалдой или молотком. Метод громоздкий и требует много усилий, возможно образование трещин и разрывов в швах в процессе правки. Горячая правка производится местным нагревом до пластического состояния выпуклой стороны изделия. После остывания в местах нагрева появляются остаточные напряжения растяжения, которые распрямляют изделие. При горячей правке местный нагрев производят газопламенной горелкой. Горячая правка более проста и эффективна, чем холодная. После правки, если этого требует технология, производят отжиг. Контроль качества сварной конструкции. Основными задачами технического контроля сварочных работ является: выявление производственного брака и установление причин его возникновения; указание методов устранения и исправления брака. Различают три вида контроля: Предварительный. Для предупреждения брака, когда проверяют качество основного метала, сварочного материала, электродов, флюсов и т.д. (заготовок, поступающих на сборку, состояние сварочной аппаратуры и качество сборки, а так же квалификацию сварщика). 1.12 Текущий (контроль в процессе сварки) Проверяют внешний вид шва, его геометрию, режимы и порядок сварки, исправность сварочного оборудования и приспособлений. Контроль готового узла. Предусматривает внешний осмотр и обмер сварных соединений, испытания на плотность, просвечивание рентгеновскими или гамма лучами, контроль ультразвуком, магнитным методом контроля, металлографическими исследованиями, механические испытания. Вид контроля выбирают в зависимости от назначения изделия и требований, предъявляемых техническим условиям или ГОСТом. Внешний осмотр осуществляется невооружённым глазом или с помощью лупы с двадцати кратным увеличением. Этим методом выявляются все видимые дефекты сварки и подготовки кромок под сварку. Внешнему осмотру подвергаются 100% швов. Испытание аммиаком. Сущность этого метода заключается в том, что испытуемые швы покрываются бумажной лентой или марлей пропитанной пяти процентным раствором азотнокислой ртути или фенолфталеином. В изделие до определённого давления нагнетается воздух и одновременно подаётся некоторое количество газа аммиака. Проходя через поры аммиак, оставляет после себя чёрные или красные пятна, в зависимости от пропитки бумаги (азотнокислая ртуть – чёрные пятна, фенолфталеин – красные). Гидравлические испытания. Проверку смонтированных резервуаров, трубопроводов, сосудов и ёмкостей проводят двумя способами: наливом воды и гидравлическим давлением. Наливом воды испытываются вертикальные резервуары и другие ёмкости. Для испытания резервуар до краёв наполняется водой, затем выдерживают не менее двух часов, в течение этого времени ведётся наблюдение за появлением дефекта. Если дефект обнаружится, сливают воду до уровня дефекта, устраняют его и вновь заливают водой. Если в течение 24-х часов в сварных швах дефект не обнаружен, резервуар считается выдержавшим испытание. Мелкие дефекты в виде пор исправляют после испытания. Категорически запрещается производить во время гидравлического испытания отстукивания швов во избежание его разрушения. Гидравлическое испытание применяется при проверке плотности и прочности различных котлов, трубопроводов и сосудов, работающих под давлением. Повышенное давление в трубопроводах создаётся гидравлическими насосами. Величина давления при испытании берётся 1,25 –2 рабочего давления. Пневматические испытания Проводятся сжатым воздухом или газом. Этот метод значительно удобнее, чем гидравлическое испытание, но в виду опасности взрыва в строительно-монтажных организациях он почти не применяется. Механические испытания При механических испытаниях проверяется прочность сварных соединений. Образцы свариваются сварщиками в тех же условиях, что изделия, или вырезаются из изделия. Засверливание шва применяют для определения дефектов шва или кромки наиболее сомнительных мест, выявленных просвечиванием или дефектоскопией. В исследуемом месте шов насверливают сверлом, диаметр которого на три миллиметра больше ширины шва. Поверхность засверленного места пропитывают 10 – 12% раствором йодной двойной соли хлористой меди и аммония. При этом дефекты хорошо видны после испытания, засверленное место заваривают. Исследования макро- и микроструктуры производят на специальных образцах, называемых макро- и микрошлифами. Поверхность образцов должна быть тщательно отшлифована и протравлена. Испытания проводят в лабораториях с помощью микроскопов и луп. Контроль просвечиванием швов (рентгеновскими или гамма лучами) позволяет обнаружить дефекты внутри шва без разрушения сварного соединения. Эти лучи, невидимые человеческим глазом, способны проникать через толщину метала, действуя на светочувствительную фотоплёнку, приложенную к шву с обратной стороны. В местах, где имеется дефект (поры, трещины и др.), поглощение лучей металлом будет меньше, и они окажут более сильное воздействие на чувствительную плёнку. Поэтому в этом месте после проявления плёнки будет тёмное пятно, соответствующее по размерам и форме имеющемуся дефекту. Источником рентгеновских лучей служит рентгеновская трубка. В качестве источника гамма лучей применяют радиоактивный кобальт, цезий и др. Ультразвуковой контроль основан на способности высокочастотных колебаний (50000 Гц) проникать в металл. Эти колебания, проходя через металл шва, отражаются от поверхности пор, трещин и других дефектов. Отражения колебания улавливаются искателем и преобразуются в электрические импульсы, которые на специальном приборе дают сигнал о наличии дефекта в сварном шве. Данный метод только определяет место дефекта, не давая данных о его характере и размерах, а характер дефекта засверловкой. Магнитный контроль осуществляется путем намагничивания изделия. Суть метода заключается в том, что магнитные силовые линии, проходя через сварной шов, отклоняются в местах дефекта от своего пути. В этих местах возникает поток рассеяния, в который входит на поверхность изделия. Различают три метода магнитных порошков, магнитной суспензий, магнитографический. Метод магнитных суспензий Магнитной суспензией называется жидкость (керосин, трансформаторное масло, воду, спирт) с взвешенными частицами магнитного порошка. Суспензия наносится на намагниченный шов кистью или окунанием. Выявление дефектов происходит так же, как и при порошковом методе. Эти два метода позволяют обнаружить трещины глубиной до восьми миллиметров и не провары до шести миллиметров. После контроля изделия размагничивают. Магнитографический метод основан на записи потоков рассеивания намагниченного шва, возникающих в зоне расположения дефектов с помощью ферромагнитной плёнки. Затем дефекты воспроизводятся с ленты на экране электроннолучевой трубки. Метод прост и удобен, даёт высокую производительность (5 – 6 м/мин.). 1.13 Нанесение защитных покрытий Сталь и чугун составляющие главную часть всех технических металлов и сплавов, весьма сильно подвержены коррозии, поэтому их защита от коррозии требует особого внимания. Производство коррозийное – стойких сплавов (например высоколегированных, хрома и хромоникелевой стали) само по себе уже является способом борьбы с коррозией, причем наиболее эффективным. Нержавеющие стали и чугун, также как и коррозийностойкие сплавы цветных металлов, – весьма ценный конструкционный материал, однако применение таких сплавов же всегда возможна по причине их высокой стойкости или по механическим соображением. Применяются следующие способы защиты металлических изделий от коррозии: Металлические покрытия. Химические покрытия. Электрохимическая защита. Неметаллическая покрытия. Металлические покрытия Это защита от коррозии путем нанесения тонкого слоя металла обладающего достаточной стойкостью в данной среде, дает хорошие результаты и является весьма распростроненым. Металлические покрытия могут быть нанесены следующем способом: гальваническим, дидгузионным. Химическая защита Заключается в том, что на поверхность изделий искусственно создают защитные неметаллические пленки, чаще всего окисные за счет окисления поверхностного слоя металла. Процесс создания окисных пленок называют оксидированием или воронением. При оксидировании стали изделия подвергают действию каких либо окисление. Наиболее распространен способ погружения из в азотное – кислых солей при t около 140о. Оксидирования применяют для алюминия и их сплавов. Этим способом осуществляется защита изделий работающих в атмосферных условиях (различные и инструменты и приборы). Электрохимические защита Разделяется на прожекторную и катодную. Протекторная защита применяется для изделий, работающих в электролизах. Сущность ее заключается в том что и поверхности подлежащей защите или в близи прикрепляют протекторы, после сделоны из металла, имеющего потенциал меньший чем потенциал защищаемого изделия. При этом образуется гальваническом пара изделия – протектор в которой оно там будет протектор, а катодом изделие. В таких условиях протектор будет постепенно разрушается защищая тем самым изделием (подводной части судов, винты и киль). Неметаллические покрытия Это покрытие красками, эмалями, лаками и смазкой, а также суммирование. Лакокрасочные покрытия изолируют металл от внешней среды и препятствует образованию микроэлементов на поверхности металла. Лакокрасочные покрытие применяются довольно часто. Это объяснение надежность данного способа защиты от коррозии в атмосферных условиях и простотой выполнения операций покрытия. В качестве смазок применяют различные минеральные масла и жиры. Защита смазкой производится при хранении и транспортировки металлических изделий смазки полностью обновляют. Измерованием называют покрытия металлов резиной или эбонитом для защиты хим. аппаратуры (сосуды, трубы проводы травленые и гальванические ванны краны) от коррозийной воздействия кислотных щелочей растворов солей. Надежная защита секций забора обеспечивает эпоксидной шпатлевка (П-0010, Эмаль, ЭП-140, ЭП-711, ЭП-755) потом наносят эмаль эпоксидное пековую (ЭП-72) двумя или четырьмя слоями толщенной не менее 10 микрон и сушат при t=100о – 120о не менее 4-х часов. 1.14 Сдача конструкции ОТК Для того чтобы предъявить к сдаче коробчатой конструкцию отделу технического контроля (ОТК), необходимо проверить размерность согласно чертежу, размерность катета шва (см. раздел 1.10. «Дефекты и способы их устранения»). При контроле была произведена проверка швов на герметичность. В зависимости от вида дефектов их устраняют разными способами. После устранения дефектов конструкцию сдают контролеру ОТК. После этого конструкция направляется в маляропогрузочный цех для нанесения защитных покрытий, для защиты конструкции от коррозии. 2. Экономическая часть Экономичность техники и технологии сварки можно оценить себестоимости. Себестоимость сварки плавлением можно определить из расчета на 1 килограмм наплавленного металла. Такую себестоимость называют удельной: Суд = С1+ С2 + С3 + С4 + С5 + С6 + С7, где С1 – основной зарплата; С2 – дополнительная зарплата; С3 – отчисление на социальное страхование; С4 – расход на сварочные материалы; С5 – стоимость электроэнергии; С6 – амортизационные отчисления; С7 – расходы на ремонт оборудования. Основная зарплата (С1) рассчитывается как произведение часовой работы (Р) согласно тарифной сетки на общее время работы (Т) сварщика: С1=РТ, Т= to/ Kуч. Часовая ставка сварщика зависит от его разряда.
Время горения дуги на один килограмм наплавленного металла определяется по формуле: to = 1000/αн * Iсв Дополнительная заработная плата (С2) равна 10% от основной заработной платы. Фонд дополнительной заработной платы составляется для оплаты отпусков за выполнение государственных и общественных дел в рабочее время и др. Примечание: основное время (время горения дуги) рассчитывается по формуле: to = 7.85 FL / αн * Iсв где F – площадь сечения шва (см2); L – длина шва (см); 7,85 – удельная плотность наплавленного металла (г/см3); αн – коэффициент наплавки (г/ А*ч) I – сварочной ток (А). Сварочный ток (Iсв) берем согласно технологии изготовления сварочной конструкции по формуле Хренова. Для ручной дуговой сварки: Iсв = (20+ 6dэл) * dэл Отчисления на социальное страхование (накопления пенсионного фонда) (С3) составляет 61% от основной и дополнительной зарплата: С3= 0,61 * (С1+ С2) Стоимость сварочных материалов, необходимых для плави на один килограмм металла рассчитывается по формуле: С4= Спр * Кр, где Спр – стоимость одного килограмма покрытых электродов; Кр – коэффициент расхода проволоки, учитывающий потери электродного металла и массу покрытия. Примечание: Расход покрытых электродов, необходимых для сварки, можно определять умножением наплавленного металла на коэффициент расхода электродов, учитывающего массу покрытии потери металла при сварке: Gпэ = Gн*Kр Коэффициент расход покрытых электродов равен у электродов марки АНО-5–1,6; АНО-6–1,7 и др. Стоимость флюса принимаем равной 40 руб./кг, а сварочной проволоки – 140 руб./кг. Расход проволоки равен расходу флюса. Расход покрытых электродов в штуках можно определять по среднему выходу наплавленного металла с одного электрода. Тогда количество покрытых электродов в штуках будет равно частному от деления массы наплавленного металла на коэффициент выхода наплавленного металла с одного электрода: К= Gн / Kв Для различных марок покрытых электродов имеется соответствующий выход наплавленного металла. Например, выход наплавленного металла при выполнении швов в нижнем положении на переменном токе при максимальном значении сварочного тока согласно паспорта электродов диаметрами 3, 4, 5, 6 мм соответственно составляет 30,9; 70,7; 111,1; 160 г. для электродов марки ОЗС-3 и 15,4; 35,2; 55,3; 79,6 г для электродов марки АНО – 6. Коэффициент расхода сварочной проволоки (Кр) для шланговой полуавтомачиской сварки в углекислом газе составляет 1,08. Коэффициент расхода порошковой проволоки (Кр) составляет 1,2 – 1,3 в зависимости от вида поперечного сечения и диаметра проволоки, технологических условий сварки. Норма расхода газа (дм3/с), при сварке и кислородной резке: Расход углекислого газа при полуавтомачиской сварке – 0,2 – 0,4; Расход кислорода при сварке – 0,4 – 0,6. Средний расход электроэнергии (кВт * ч), на один килограмм наплавленного металла (А): Сварка покрытыми электродами при переменном токе – 3,5 – 4,0; Сварка покрытыми электродами от выпрямителя – 4,0 – 4,5; Сварка покрытыми электродами на постоянном токе – 6,0 – 7,0. Стоимость электроэнергии на сварку (С5) определяется по формуле: С5= Сэл. * А/ Kуч, где Сэл = 3,35 (руб./кВт * ч); А – расход электроэнергии при сварке кВт * ч/ кг наплавленного металла; Kуч – коэффициент, учитывающий организацию труда и совершенство источника питания дуги током от потерь электроэнергии. Его можно принимать равным от 0,5 при ручной сварке без выключения хода источника питания дуги и до 1 при автоматической сварке. Амортизационные отчисления () составляют денежные фонд, часть средств которого расходуется на нужды капитального ремонта оборудования, а остальная часть – на финансирование капитальных вложений на оборудование. Нормы амортизационных отчислений на стоимость сварочного оборудования определяется ведомственными органами. Амортизационные отчисления обычно составляют 34,2% стоимость оборудования и определяется по формуле: С6= 0,342*Соб*Т/(Ф * Коб), где Соб – стоимость оборудования (руб.) Ф – Годовой плановой фонд времени оборудования при двухсменном режиме работы 3976 (ч). Коб – коэффициент использования плавного фонда времени оборудования, учитывающий его простой по технологическим и организационным условиям (0,75 – 0,9). |