Главная страница
Навигация по странице:

  • 1. Основная часть Классификация стали

  • 1.2 Определение свариваемости стали

  • 1.3 Требования к источникам питания дуги

  • 1.4 Внешняя вольт–амперная характеристика источников питания дуги

  • 1.5. Подбор сварочного оборудования и источника питания дуги

  • полуавтоматическая сварка. Н. Г. Славянов на Пермских пушечных заводах, начальником которых он являлся, организовал значительный по тем временам электросварочный цех и выполнявший большое количество сварочных работ с искусством заслуживающий


    Скачать 83.25 Kb.
    НазваниеН. Г. Славянов на Пермских пушечных заводах, начальником которых он являлся, организовал значительный по тем временам электросварочный цех и выполнявший большое количество сварочных работ с искусством заслуживающий
    Дата18.01.2022
    Размер83.25 Kb.
    Формат файлаdocx
    Имя файлаполуавтоматическая сварка.docx
    ТипДокументы
    #335275
    страница1 из 5
      1   2   3   4   5

    Введение



    Электрическая сварка – великое русское изобретение.

    В 1802 году В.В. Петров впервые в мире открыл явление электрической дуги и указал на возможность использования тепловой энергии дуги в расплавлении металлов. Он первый построил самую большую для того времени батарею, при помощи которой и проводил свои опыты. Эти замечательные опыты с электрической дугой В.В. Петров опубликовал в 1803 году. В ней указывается на возможность применения электрической дуги.

    Первый в мире электродуговую сварку осуществил русский инженер Николай Николаевич Бенардос (1842–1904 гг.). Работы над созданием крупных аккумуляторных батарей привели его в 1882 году к изобретению способа электрической дуговой сварки металлов в России и ряде других стран.

    Дальнейшее развитее сварки нашло применение в работах Н.Г. Славянова (1854–1897 гг.). С именем Славянова связано развитие металлургических основ электрической сварки и создание метода сварки металлическим электродом. Ему также принадлежит заслуга создания автоматического регулятора длины дуги и первого сварочного генератора.

    Н.Г. Славянов на Пермских пушечных заводах, начальником которых он являлся, организовал значительный по тем временам электросварочный цех и выполнявший большое количество сварочных работ с искусством заслуживающий внимание и в настоящее время. С 1891 по 1894 года лично С.Г. Славяновым и под его руководством выполнено ремонтно-сварочных робот на 1631 изделий с общим весом 250 тонн и израсходовано при этом 11 тонн электродов.

    Н.Г. Славянов являлся инженером-металлургом, глубоко понимал физико-химическую сущность процессов, происходящих при сварке и разработал ряд флюсов и шлаков, позволяющих получить высококачественный, наплавленный метал.

    Развитие сварки можно разделить на три этапа:

    первый этап с 1924 по 1935 год. Сварочный процесс в то время осуществлялся вручную, электродами без покрытия или с тонким изолирующим покрытием электродов.

    Второй этап с 1935 по 1940 год. В эти годы сварка широко внедрялась во всех отраслях промышленности на базе применения электродов со специальным покрытием.

    Третий этап с 1940 года. Этот этап характеризуется максимальным внедрением механизации в сварочный процесс на базе разработанного в 1940 году под руководством Е.О. Патонова современного способа автоматической сварки под слоем флюса.

    Большие заслуги в деле развития и совершенствования теории и практики сварочного производства имеют коллективы Института им. Е.О. Патона АНУССР, ЦНИИТМаш, ЛПИ им. Калинина, МВТУ им. Баумана, отраслевых ЦНИИ, завод «Электрик», Кировского, Уралмаш и др.

    Применение сварки даёт не только экономию металла (на 20–25%), но и экономию времени и рабочей силы.

    Разработаны и применяются в некоторых отраслях промышленности новые методы сварки: сварка давлением, трением, ультразвуком, токами высокой частоты, плазменной дугой, сварка электронным лучом в вакууме, диффузионная сварка в вакууме, взрывом, сварка под водой лучом лазера. В ближайшие годы можно достичь серьезных дальнейших успехов в развитие и в промышленном применении новых видов сварки. Произошли достижения в области механизации и автоматизации сварочных процессов, которые позволили поднять на высокий технический уровень изготовление котлов, труб и трубопроводов, морских и речных судов, нефтеаппаратуры, прокатных станков, мощных прессов и насосов и других машин и механизмов.

    1. Основная часть


      1. Классификация стали


    Сталью называется сплав железа с углеродом, где содержание углерода до 2%.

    Стали подразделяются на углеродистые и легированные. По назначению различают, стали конструкционные с содержанием углерода в сотых долях и инструментальные с содержанием углерода в десятых долях процентах.

    Основным элементом в углеродистых и конструкционных сталях является углерод, который определяет механические свойства сталей этой группы. Углеродистые стали выплавляют обыкновенного качества и качественные.

    Стали, углеродистые обыкновенного качества подразделяются на три группы:

    Группа А – по механическим свойствам

    Группа Б – по химическому составу

    Группа В-по механическим свойствам и химическому составу.

    Изготавливают, стали следующих марок:

    Группа А – Ст 0, Ст 1, Ст2, Ст3, Ст4, Ст5, Ст6;

    Группа Б – БСт 0, БСт 1, БСт 2, БСт 3, БСт 4, БСт 5, БСт 6

    Группа В-ВСт 0, ВСт 1, ВСт 2, ВСт 3, ВСт 4, ВСт 5.

    По степени раскисления сталь обыкновенного качества имеет следующее обозначение КП – кипящая ПС – полуспокойная СП – спокойная.

    Кипящей стали, не обладают повышенной хладноломкостью, поэтому они не пригодны для изготовления ответственных сварных деталей и конструкций, работающих при низких температурах.

    Полуспокойные стали в меньшей степени склонны к трещинообразованию при сварке, чем кипящие.

    Хорошо свариваются, спокойные стали, они имеют однородную структуру и могут применяться для изготовления ответственных сварных конструкций. Углеродистые стали делятся в свою очередь на низкоуглеродистые, среднеуглеродистые и высокоуглеродистые стали.

    Низкоуглеродистые стали содержат углерода до 0,20%, свариваются хорошо, и не требуют, по той либо особой технологии.

    Среднеуглеродистые стали с содержанием углерода до 0,45%, свариваются несколько хуже. При сварке этих сталей в участках, принадлежащих к сварному шву, образуются закалочные зоны, в которых могут возникать трещины.

    Высокоуглеродистые стали с содержанием углерода более 0,45%, обладают плохой свариваемостью, и требуют при сварке ряда технологических ограничений.

    Легированной сталью называется такая сталь, в составе которой имеются в определённых количествах специальные легирующие элементы до 65%, введенные с целью придания стали особых механических и физико-химических свойств.

    Все легированные стали, по своему назначению могут быть подразделены на следующие группы: низколегированные стали – с содержанием легирующих элементов до 2,5%, эти стали, производятся, для получения стали высокими механическими свойствами, работающих при нормальной температуре. В качестве легирующих элементов в них содержится недефицитные материалы, как например: марганец, кремний, хром.

    Среднелегированные стали – содержание легирующих элементов в этих сталях от 0,25% до 10%. Эти стали применяются для специальных механических конструкций. Эта группа сталей отличается повышенным содержанием углерода от 0,2% до 0,5% и легирующими элементами, вызывающими глубокую прокаливаемость.

    Эти стали приобретают повышенные механические свойства только после соответствующей термической обработки.

    Высоколегированные стали – содержание легирующих специальных элементов в этих сталях от 10% до 65%. Эти стали, обладающие особыми физико-химическими (нержавеющие и жаропрочные) эти стали свариваются плохо.

    Маркировка всех легированных конструкционных сталей однотипна, первые две цифры обозначают содержание углерода в сотых долях, буквы являются условным обозначением легирующих элементов, цифра после буквы обозначает содержание легирующих элементов в процентах, причём содержание, равно одному проценту и меньше не ставится. Буква «А» в конце марки показывает, что сталь высококачественная и имеет пониженное содержание серы и фосфора. Для отдельных легирующих элементов приняты следующие буквенные обозначения: Н – никель, Х – хром, В-вольфрам, Ф – вонадий, К – коболь, С – кремний, М – молибден, Г – марганец, Д – медь, Т – титан, Ю – алюминий.

    Коробчатая конструкция изготовлена из стали Ст 3, она имеет следующий химический состав:

    Fe – до 99%

    C – 0,05 – 1,7%

    Si – 0,15 – 0,35%

    Mn – 0,3 – 0,8%

    S – до 0,06%

    P – до 0,07%

    И относится по классификации стали к низкоуглеродистой, т. к. содержание углерода в ней до 0,25%.
    1.2 Определение свариваемости стали
    Свариваемость стали.

    Под свариваемостью понимается свойства металла или свойства металла образовывать установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия.

    При определении понятия свариваемости необходимо различать

    физическую, технологическую и эксплуатационную свариваемость.

    Физическая или металлургическая свариваемость определяется процессами, происходящими на границе соприкасания свариваемых деталей при различных физико-химических методах соединения металлов.

    На границе соприкасания соединяемых деталей должны произойти физико-химические процессы (рекристаллизация, химическое соединение и т.д.), в результате которых образуется прочное неразъёмное соединение – сварка.

    Под технологической свариваемостью понимается возможность получения сварного соединения определённым способом сварки. Основными показателями технологической свариваемости является стойкость расплавленного металла при сварке против образования горячих трещин и изменения в металле под действием термического цикла сварки. Технологическая свариваемость устанавливает оптимальные режимы сварки, способы сварки, технологическую последовательность выполнения работ, обеспечивающие получение требоваемого сварного соединения.

    Данные эксплуатационной свариваемости определяют конкретной области и условия допустимого применения материалов, сварных конструкциях и сварных изделиях.

    На свариваемость металлов и сплавов оказывают влияние химические элементы, входящие в их состав.

    Свариваемость стали изменяется в зависимости от содержания в ней углерода и легирующих элементов.

    По свариваемости стали делятся на четыре группы:

    Первая группа – хорошо сваривающиеся стали, у которых Сэкв не более 0,25%. Эти стали, при обычных способах сварки не дают трещин, сварка таких сталей выполняется без предварительного и сопутствующего подогрева, без последующей термической обработки.

    Вторая группа – удовлетворительно сваривающиеся стали, у которых

    Сэкв в пределах от 0,25% до 0,35%, такие стали допускают сварку без появления трещин только в нормальных производственных условиях, когда температура окружающей среды выше ноля градусов и отсутствует ветер и т.д.

    В условиях, отличающихся от нормальных предварительным подогревом или с предварительной и последующей термообработкой.

    Третья группа – С ограниченной свариваемостью, где С экв в пределах от 0,35% до 0,45%. К этой группе относятся стали, которые в обычных условиях сварки склоны к образованию трещин. Сварка таких сталей производится по специальной технологии, регламентирующей режимы предварительной термообработки и тепловой обработки после сварки.

    Четвёртая группа – с плохой свариваемостью, где С экв более 0,45%. Стали, входящие в эту группу, наиболее трудно поддаётся сварке, склонны к образованию трещин. Сварка их выполняется с обязательной предварительной термообработкой перед сваркой, подогревом в процессе сварки и последующей термообработкой. Температура подогрева для низколегированных сталей четвёртой группы в зависимости от величины, для предупреждения образования трещин сварки сталь этой группы выполняется с С экв принимается следующее:




    Эквивалент углерода (С экв) в%



    0,58



    0,60



    0,62



    0,74



    0,85





    Темп. подогрева (0С) (по Цельсию)


    100


    125


    150


    175


    200


    1.3 Требования к источникам питания дуги
    Важное условие получения сварного шва высокого качества является устойчивость процесса сварки. Для этого источники питания дуги должны обеспечить возбуждение и стабильное горение дуги. Для этого необходимо чтобы источники питания дуги удовлетворяли следующим требованиям:

    1. Напряжение холостого хода Uxx = 90 вольт для постоянного тока. Напряжение холостого хода равен 80 вольт для переменного тока – это необходимо для лёгкого возбуждения дуги и недолжно превышать норму безопасности.

    2. Напряжение устойчивого горения дуги (рабочее напряжение) должно быстро устанавливаться и изменяться в зависимости от длинны дуги. С увеличением длинны дуги, напряжение возрастает. С уменьшением длины дуги напряжение убывает.

    3. Ток короткого замыкания не должен превышать сварочный ток более чем на 40 – 50%, при этом выдерживать продолжительные короткие замыкания сварочной цепи.

    4. мощность источника питания должна быть достатачной для выполнения сварочных работ.
    1.4 Внешняя вольт–амперная характеристика источников питания дуги
    Внешняя вольт – амперная характеристика источника питания дуги.

    Источник тока для питания сварочной дуги должны иметь специальную внешнюю вольт – амперную характеристику.

    Внешней характеристикой источника питания называется зависимости напряжения на его выводах от силы сварочного тока в электрической цепи. Различные источники питания дуги в зависимости от их конструкций и назначения могут иметь сведущие вольт – амперную характеристики: падающая, пологопаюдащая, жесткая, и возрастающая.

    Источники тока выбирают зависимости от вольт – амперной характеристика дуги соответствующим принятому способу сварки. Источники сварочного тока с падающим (1,2) характеристиками необходимы для облегчения зажигания дуги засчет повышенного напряжения холостого хода Ихх и для облегчения устойчивого горения дуги колебаниях ее длины.

    Источники питания дуги с жесткой(3) и возрастающей(4) характеристики применяют для сварки плавящимся электродом в атмосфере, защитных газах и для электрошлаковой сварки.
    1.5. Подбор сварочного оборудования и источника питания дуги
    Полуавтомат А – 547У для сварки в газе: представляет собой пульт управления, горелки, шланга для подачи проволоки, чемодана с подающим механизмом и катушки для проволоки, сварочного провода, кнопки «Пуск» для подачи напряжения от источника питания для дуги и двигателя полуавтомата.

    Сварочный выпрямитель ВДГ – 301: представляет собой понижающий трехфазной трансформатор с подвижной обмоткой, блока вентилей и устройства, регулирующего сварочный ток.

    Назначение источника питания дуги

    Сварочный выпрямитель типа ВДГ – 301 Предназначены для питания дуги при полуавтоматической сварке плавящимися электродами в среде углекислого или инертного газа.

    Полуавтомат А – 547У позволяет сваривать сталь 0,8 мм и выше, им выполняются угловые швы катетами1 – 7 мм в различных положениях шва.

    Устройство выпрямителя ВДГ – 301 и полуавтомата А – 547 У.

    Он состоит из понижающего трехфазного трансформатора с подвижной обмоткой, блока вентилей и устройства, регулирующего сварочный ток. Трансформатор выпрямителя имеет два диапазона регулирования сварочного тока: малых токов – при включении обмоток трансформатора звездой и больших токов – при включении треугольников. Он состоит из легкого чемодана с подающим механизмом и катушкой для проволоки и пульта управления, смонтированного вместе с источником питания.

    Автоматическая подача проволоки с катушки осуществляется подающим механизмом, состоящим из электродвигателя переменного или постоянного тока, коробки скоростей ведущего и прижимного ролика. Проволока подается роликами с постоянной заданной скоростью через внутренний канал гибкого шланга, держатель и наконечник.

    Одной из основных частей полуавтомата является шланг, состоящий из проволочной спирали с оплеткой и резиновой оболочкой, по внутреннему каналу которой проходит электродная проволока.

    Полуавтомат А – 547У снабжается легкой горелкой (массой 120г) для сварочной проволоки диаметром 0,8–1,0 мм, со шлангом длиной 1,2 м и тяжелой горелкой – для проволоки 1,2 – 1,4 мм. Газ подводится по отдельной трубке, присоединенной к штуцера.

    Принцип действия или работы

    Сварочный выпрямитель типа ВДГ – 301 предназначен для питания дуги полуавтоматической сварки плавящимся электродом в среде углекислого или инертного газа.

    Подача проволоки плавно регулируется изменением скорости электродвигателя постоянного тока и сменой подающих роликов. Особенностью полуавтомата является питание электродвигателя и других цепей управления от источника питания постоянного тока. Перед началом сварки выключателем / включателем (ВК)производится подключение всей цепи полуавтомата. После нажатия кнопки «Пуск», расположенной на щитке сварщика, замыкается цепь катушки силового контактора, срабатывает контактор и на горелку подается сварочное напряжение источника питания; одновременно включается двигатель механизма подачи проволоки, который начинает подавать ее в зону сварки.

    Процесс сварки продолжается до тех пор, пока замкнута кнопка «Пуск». При отпускании кнопки процесс сварки прекращается.
    Технические данные ВДГ – 301

    Номинальный сварочный ток при ПР=60%, А


    300

    Пределы регулировки тока, А

    40–300

    Напряжение, В

    номинальной рабочее

    питающей сети


    30

    380

    Потребляемая мощность, кВ*А

    15

    Размеры, мм

    высота

    ширина

    глубина


    960

    775

    700

    Масса, кг


    210


    Изготовитель

    СЭМЗ
      1   2   3   4   5


    написать администратору сайта