Главная страница
Навигация по странице:

  • Возбудимость.

  • Изолированное

  • Двустороннее проведение возбуждения

  • Скорость проведения возбуждения

  • Билет 20. Понятие о нервных сетях. Свойства нервных центров.

  • Билет 21. Функциональное значение спинного мозга

  • Билет 22. Рефлекторная функция продолговатого мозга

  • Билет 23. Участие продолговатого мозга в регуляции вегетативных функций.

  • Билет 24.Мост. Его участие в регуляции различных физиологических процессов.

  • Нейрофизиология шпоры Маринова. Нейрофизиология раздел физиологии, посвященный изучению системы нервной посредством электрофизиологических методик


    Скачать 109.88 Kb.
    НазваниеНейрофизиология раздел физиологии, посвященный изучению системы нервной посредством электрофизиологических методик
    АнкорНейрофизиология шпоры Маринова.docx
    Дата02.05.2017
    Размер109.88 Kb.
    Формат файлаdocx
    Имя файлаНейрофизиология шпоры Маринова.docx
    ТипДокументы
    #6540
    страница4 из 6
    1   2   3   4   5   6

    Билет 19. Проведение возбуждения по мякотным и безмякотным волокнам. Свойства нервных волокон
    Нервные волокна:

    - миелинизированные (покрытые миелиновой оболочкой)

    - немиелинизированные (не покрытые миелиновой оболочкой)

    Также аксоны разделяют по их диаметру и скорости проведения возбуждения.

    Скорость проведения возбуждения по нервному волокну зависит от:

    - диаметра волокна (квадратному из диаметра, чем больше диаметр, тем выше скорость);

    - наличия или отсутствия миелиновой оболочки (по миелинизированным аксонам возбуждение проводится  быстрее);

    - свойств мембраны нервного волокна (плотности натриевых каналов, емкости мембраны и т.д.).
    По миелинизированным волокнам нервный импульс (ПД) проводится гораздо быстрее из-за того, что ПД возникает только в участках, непокрытых миелиновой оболочкой – в перехватах Ранвье, поскольку там сопротивление электрическому току существенно ниже, чем в области, покрытой миелином. В каждом перехвате Ранвье ПД возникает заново и с постоянной амплитудой (закон «все или ничего»). Такой способ проведения возбуждения называется сальтаторным, или скачкообразным.

    Итак, по миелинизированным волокнам распространение импульса происходит быстрее. Поскольку миелин выступает в данном случае как изолятор, то в участках мембраны под миелиновой оболочкой невозможны трансмембранные токи заряженных частиц. Также натриевые каналы локализованы в основном в области перехватов Ранвье, в мембране миелинизированных участков их очень мало. По этим двум причинам ПД может возникать только в перехватах Ранвье.

    По миелинизированным участкам мембраны тоже должна происходить передача возбуждения. В этих участках деполяризация распространяется по мембране пассивным (электротоническим) способом. Внутренняя часть нерва заполнена внутриклеточной средой, которая является достаточно хорошим проводником, т.к. содержит свободные заряженные частицы, в частности положительно заряженные ионы металлов. В результате возникновения на мембране в области перехвата Ранвье зоны возбуждения (ПД) и, соответственно, разности потенциалов на соседних участках мембраны возникают токи заряженных частиц, и эти токи, распространяясь по волокну, несут с собой деполяризацию. Однако эти токи по мере удаления от источника тока (в данном случае им является участок возбужденной мембраны, где наблюдается ПД и перезарядка мембраны) довольно быстро угасают (тем быстрее, чем выше сопротивление внутриклеточной среды), поэтому электротонически возбуждение может распространяться только на очень короткие расстояния. Однако, несмотря на то, что электротон угасает по мере удаления от перехвата Ранвье, на мембрану следующего перехвата все же приходит достаточная деполяризация для того, чтобы порог возбуждения был достигнут и начались активные процессы в мембране (лавинообразное открытие натриевых каналов и т.д.), т.е. возник ПД. Дальше уже этот перехват Ранвье выступает как источник тока, электротон распространяется, угасая, по следующему миелинизированному участку и т.д.

    Таким образом, успешное распространение импульса по миелинизированному волокну определяется расстоянием между перехватами Ранвье (они не должны быть слишком большими, чтобы деполяризация не угасла до подпорогового уровня) и амплитудой ПД. Если по какой-то причине амплитуда ПД уменьшается (например, выключается часть натриевых каналов или изменяется состояние мембраны), а все остальное в нерве (сопротивление внутриклеточной среды, расстояние между перехватами Ранвье) остается прежним, то в следующем перехвате Ранвье ПД уже может не возникнуть, т.к. деполяризация мембраны может оказаться ниже пороговой. И, таким образом, дальнейшее проведение импульса по волокну прекратится. Свойства нервных волокон.
    Нервное волокно обладает рядом свойств: возбудимостью, лабильностью и проводимостью (изолированным и двухсторонним проведением импульсов) и другими свойствами.

    Возбудимость. Разные нервные волокна обладают различной возбудимостью. Мякотные нервные волокна обладают более высокой возбудимостью, по сравнению с безмякотными.

    Лабильность. Мякотные нервные волокна обладают более высокой лабильностью по сравнению с другими нервными образованиями. Очень низкая лабильность у безмякотных волокон.

    Изолированное проведение возбуждения. Несмотря на то, что нерв состоит из многих пучков нервных волокон, возбуждение по каждому волокну распространяется изолированно, не переходя на соседнее. Это обеспечивается наличием миелиновой оболочки, которая обладает хорошими изолирующими свойствами, как и любая другая оболочка.

    В безмякотном волокне возбуждение распространяется медленно, потенциалы действия небольшие, хотя оболочка волокна тонкая, импульсы все равно передаются изолированно.

    Возбуждение может проводиться только по целому, неповрежденному нервному волокну. При повреждении оболочки нарушается изолированное проведение. При перерезке нерва, его сдавливании, сильном растягивании или отравлении (мышьяк, новокаин) импульсы не распространяются.

    Двустороннее проведение возбуждения.

    Возбуждение по нервному волокну может распространяться в обе стороны. В пределах каждого нейрона импульсы возбуждения распространяются по нервному волокну в обе стороны с одинаковой скоростью от раздражаемого участка. Такое непрерывное проведение импульсов характерно для безмякотных нервных волокон. В мякотных нервных волокнах возбуждение распространяется скачкообразно (сальтораторно), перескакивая от одного перехвата Ранвье к другому, т.к. круговые толки могут возникать лишь между двумя перехватами Ранвье (возбужденным и невозбужденным). Прерывистый механизм передачи импульсов по миелиновому волокну имеет преимущество перед-непрерывным, т.к. обеспечивает большую скорость проведения, меньший расход энергии и повышенную надежность (вследствие высокой плотности тока на перехватах Ранвье).

    Скорость проведения возбуждения.

    Распространение возбуждения по нервному волокну заключается в последовательном возникновении и исчезновении потенциала действия (круговых токов) на протяжении нервного волокна.

    Билет 20. Понятие о нервных сетях. Свойства нервных центров.
    Нервная сеть - тип строения нервной ткани, представленный совокупностью нейронов в сочетании с проходящими в различных направлениях нервными волокнами, имеющими под микроскопом вид войлока или сетки.

    Основные свойства нервных центров:

    1. Пространственная и временная суммация

    Пространственная и временная суммация основана на свойстве каждого нейрона в центре к суммации как возбуждения, так и торможения. Поскольку каждый нервный центр имеет много параллельно расположенных афферентных или входных волокон от рецептивного поля рефлекса, слабые раздражения нескольких участков рецептивного поля, в отдельности не способные реализовать рефлекс, вызывают в нейронах центра несколько ВПСП, которые суммируются, приводя к формированию на мембране нервной клетки потенциалов действия, распространяющихся по эфферентным проводникам, вызывая рефлекторную реакцию. Это явление называют пространственной суммацией. При увеличении частоты афферентных сигналов в единицу времени амплитуда ВПСП нарастает до критического уровня из-за повышения эффективности синаптического проведения, что также вызывает воз­буждение нейронов и рефлекторный ответ на слабые частые раздражения. Это явление называют временной суммацией;

    2. Центральная задержка рефлекса

    Центральная задержка рефлекса, характеризуется временем распространения информации в структурах нервного центра, главным образом в синапсах, где скорость проведения сигнала существенно меньше, чем в нервных проводниках. Поэтому, центральная задержка рефлекса зависит от количества синапсов между нейронами центра и представляет собой сумму синаптических задержек;

    3. Посттетаническая потенциация

    Посттетаническая потенциация — увеличение амплитуды ВПСП после серии частых (тетанизирующих) ритмических возбуждений, что связано с временной суммацией частых ВПСП и активацией синаптического проведения из-за увеличения числа квантов медиатора. Длительность состояния потенциации синапсов может достигать нескольких часов, что играет роль в процессах обучения и памяти:

    4. Последействие и пролонгирование возбуждения

    Последействие и пролонгирование возбуждения — связаны с длительными следовыми потенциалами в нейронах, улучшением синаптического проведения, наличием кольцевых нейронных цепей и реверберацией возбуждения. Все эти процессы также играют роль в процессах обучения и памяти;

    5. Трансформация ритма возбуждений

    Трансформация ритма возбуждений, т.е. увеличение или уменьшение частоты нервных импульсов и эфферентных проводниках (на выходе) по сравнению с частотой афферентной импульсации (на входе центра), что связано с механизмом синаптической передачи (трансформация ритма как свойство синапса) и интегративной деятельностью нейронов;

    6. Спонтанная (фоновая) электрическая активность

    Спонтанная (фоновая) электрическая активность — периодическое генерирование импульсов возбуждения (потенциалов действия) нервными клетками центра в состоянии покоя, т.е. без специфичес кого раздражения рецептивного поля рефлекса. Наличие спонтанной активности обусловлено тем, что организму не свойственно абсолютное отсутствие раздражителей или информационный покой, при этом за счет дивергенции и конвергенции возбуждений в нервных сетях нейроны центра всегда получают возбуждающие импульсы и от клеток других нервных центров.

    7. Тонус нервного центра

    Тонус нервного центра — состояние некоторого уровня активности нейронов, обеспечивающей их готовность к рефлекторной деятельности и проявляющейся в постоянной эфферентной импульсации низкой частоты к органам-эффекторам. Тонус нервных центров обусловлен небольшим уровнем афферентных сигналов от различных рецептивных полей (т.е. имеет рефлекторную природу), а также действием на нейроны метаболитов и других гуморальных раздражителей из клеточной микросреды. Проявлением тонуса нервных центров является спонтанная электрическая активность нейронов и некоторая фоновая активность эффекторов, например, тонус скелетной мускулатуры, гладких мышц сосудов и т.п.;

    8. Пластичность нервных центров

    Пластичность нервных центров — способность перестраивать функциональные свойства для более эффективной регуляции функций, осуществления новых, ранее несвойственных этому центру рефлексов или восстановления функций после повреждения части нейронов центра. Пластичность обеспечивает изменение эффективности и направленности связей между нервными клетками, является рабочим механизмом обучения. В основе пластичности лежат функциональные особенности синапсов и мембран нейронов, а также наличие многочисленных дублирующих систем нейронов и нервных волокон;

    9. Утомление нервных центров

    Утомление нервных центров — снижение эффективности их деятельности в виде повышения порогов возбуждения, связанное с утомлением синапсов и метаболическими сдвигами типа энергетического истощения в нервных клетках. Утомление формируеся при чрезмерной продолжительности действия раздражителей или их интенсивности, напряженном умственном труде или физической работе.

    Билет 21. Функциональное значение спинного мозга
    Две основные функции спинного мозга-рефлекторная и проводниковая.

    В спинном мозге находятся рефлекторные центры мышц туловища, конечностей и шеи. С их участием осуществляются сухожильные рефлексы в виде резкого сокращения мышц (коленный, ахиллов рефлексы), рефлексы растяжения, сгибательные рефлексы, рефлексы, направленные на поддержание определенной позы. Рефлексы мочеиспускания и дефекации, рефлекторного набухания полового члена и извержения семени у мужчин (эрекция и эякуляция) также связаны с функцией спинного мозга.

    Спинной мозг осуществляет и проводниковую функцию. Нервные волокна, составляющие основную массу белого вещества, образуют проводящие пути спинного мозга. По этим путям устанавливается связь между различными частями ЦНС и проходят импульсы в восходящем и нисходящем направлениях. По этим путям поступает информация в вышележащие отделы мозга, от которых отходят импульсы, изменяющие деятельность скелетной мускулатуры и внутренних органов.

    Деятельность спинного мозга у человека в значительной степени подчинена координирующим влияниям вышележащих отделов ЦНС.

    Билет 22. Рефлекторная функция продолговатого мозга
    Продолговатый мозг организует и реализует ряд защитных ре­флексов: рвоты, чиханья, кашля, слезоотделения, смыкания век. Эти рефлексы реализуются благодаря тому, что информация о раздра­жении рецепторов слизистой оболочки глаза, полости рта, гортани, носоглотки через чувствительные ветви тройничного и языкоглоточного нервов попадает в ядра продолговатого мозга, отсюда идет коман­да к двигательным ядрам тройничного, блуждающего, лицевого, языкоглоточного, добавочного или подъязычного нервов, в результате ре­ализуется тот или иной защитный рефлекс. Точно так же за счет последовательного включения мышечных групп головы, шеи, грудной клетки и диафрагмы организуются рефлексы пищевого пове­дения: сосания, жевания, глотания.

    Кроме того, продолговатый мозг организует рефлексы под­держания позы. Эти рефлексы формируются за счет афферентации от рецепторов преддверия улитки и полукружных каналов в верхнее вестибулярное ядро; отсюда переработанная информация оценки необходимости изменения позы посылается к латеральному и медиальному вестибулярным ядрам. Эти ядра участвуют в опре­делении того, какие мышечные системы, сегменты спинного мозга должны принять участие в изменении позы, поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы, участие которых в изменении позы в данный момент необходимо.

    Изменение позы осуществляется за счет статических и статокинетических рефлексов. Статические рефлексы регулируют тонус скелетных мышц с целью удержания определенного положения тела. Статокинетические рефлексы продолговатого мозга обеспечивают перераспределение тонуса мышц туловища для организации позы, соответствующей моменту прямолинейного или вращательного дви­жения.

    Большая часть автономных рефлексов продолговатого мозга реализуется через расположенные в нем ядра блуждающего нерва, которые получают информацию о состоянии деятельности сердца, сосудов, пищеварительного тракта, легких, пищеваритель­ных желез и др. В ответ на эту информацию ядра организуют двигательную и секреторную реакции названных органов.

    Билет 23. Участие продолговатого мозга в регуляции вегетативных функций.
    Через продолготоватый мозг проходят все восходящие и нисходящие пути спинного мозга: спинно-таламический, кортикоспинальный, руброспинальный. В нем берут на­чало вестибулоспинальный, оливоспинальный и ретикулоспинальный тракты, обеспечивающие тонус и координацию мышечных ре­акций. В продолговатом мозге заканчиваются пути из коры большого мозга — корковоретикулярные пути. Здесь заканчиваются восходя­щие пути проприоцептивной чувствительности из спинного мозга: тонкого и клиновидного. Такие образования головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус и кора большого мозга, имеют двусторонние связи с продолговатым мозгом. Наличие этих связей свидетельствует об участии продолговатого мозга в регуляции тонуса скелетной мускулатуры, вегетативных и высших интегративных функций.

    В продолговатом мозге расположены ядра следующих черепных нервов,один из них- пара IX — языкоглоточный нерв (п. glossopharyngeus); его ядро образовано 3 частями — двигательной, чувствительной и вегета­тивной. Двигательная часть участвует в иннервации мышц глотки и полости рта, чувствительная — получает информацию от рецеп­торов вкуса задней трети языка; вегетативная иннервирует слюнные железы;

     

    Билет 24.Мост. Его участие в регуляции различных физиологических процессов.
    Мост (pons cerebri, pons Varolii) располагается выше продолго­ватого мозга и выполняет сенсорные, проводниковые, двигательные, интегративные рефлекторные функции.

    В состав моста входят ядра лицевого, тройничного, отводящего, преддверно-улиткового нерва (вестибулярные и улитковые ядра), ядра преддверной части преддверно-улиткового нерва (вестибуляр­ного нерва): латеральное (Дейтерса) и верхнее (Бехтерева). Рети­кулярная формация моста тесно связана с ретикулярной формацией среднего и продолговатого мозга.

    Важной структурой моста является средняя ножка мозжечка. Именно она обеспечивает функциональные компенсаторные и мор­фологические связи коры большого мозга с полушариями мозжечка.

    Сенсорные функции моста обеспечиваются ядрами преддверно-улиткового, тройничного нервов. Улитковая часть преддверно-улит­кового нерва заканчивается в мозге в улитковых ядрах; преддверная часть преддверно-улиткового нерва — в треугольном ядре, ядре Дейтерса, ядре Бехтерева. Здесь происходит первичный анализ ве­стибулярных раздражений их силы и направленности.

    Чувствительное ядро тройничного нерва получает сигналы от рецепторов кожи лица, передних отделов волосистой части головы, слизистой оболочки носа и рта, зубов и конъюнктивы глазного яблока. Лицевой нерв (п. facialis) иннервирует все мимические мышцы лица. Отводящий нерв (п. abducens) иннервирует прямую латеральную мышцу, отводящую глазное яблоко кнаружи.

    Двигательная порция ядра тройничного нерва (п. trigeminus) иннервирует жевательные мышцы, мышцу, натягивающую барабанную перепонку, и мышцу, натягивающую небную зана­веску.

    Проводящая функция моста. Обеспечивается продольно и по­перечно расположенными волокнами. Поперечно расположенные во­локна образуют верхний и нижний слои, а между ними проходят идущие из коры большого мозга пирамидные пути. Между попе­речными волокнами расположены нейронные скопления — ядра моста. От их нейронов начинаются поперечные волокна, которые идут на противоположную сторону моста, образуя среднюю ножку мозжечка и заканчиваясь в его коре.

    В покрышке моста располагаются продольно идущие пучки во­локон медиальной петли (lemniscus medialis). Они пересекаются поперечно идущими волокнами трапециевидного тела (corpus trapezoideum), представляющие собой аксоны улитковой части пред­дверно-улиткового нерва противоположной стороны, которые закан­чиваются в ядре верхней оливы (oliva superior). От этого ядра идут пути боковой петли (lemniscus lateralis), которые направляются в заднее четверохолмие среднего мозга и в медиальные коленчатые тела промежуточного мозга.

    В покрышке мозга локализуются переднее и заднее ядра трапециевидного тела и латеральной петли. Эти ядра вместе с верхней оливой обеспечивают первичный анализ информации от органа слуха и затем передают информацию в задние бугры четверохол­мий.

    В покрышке также расположены длинный медиальный и тектоспинальный пути.

    Собственные нейроны структуры моста образуют его ретикуляр­ную формацию, ядра лицевого, отводящего нервов, двигательной порции ядра и среднее сенсорное ядро тройничного нерва.

    Ретикулярная формация моста является продолжением ретику­лярной формации продолговатого мозга и началом этой же системы среднего мозга. Аксоны нейронов ретикулярной формации моста идут в мозжечок, в спинной мозг (ретикулоспинальный путь). По­следние активируют нейроны спинного мозга.

    Ретикулярная формация моста влияет на кору большого мозга, вызывая ее пробуждение или сонное состояние. В ретикулярной формации моста находятся две группы ядер, которые относятся к общему дыхательному центру. Один центр активирует центр вдоха продолговатого мозга, другой — центр выдоха. Нейроны дыхатель­ного центра, расположенные в мосте, адаптируют работу дыхатель­ных клеток продолговатого мозга в соответствии с меняющимся состоянием организма.
    1   2   3   4   5   6


    написать администратору сайта