Главная страница

Материаловедение. Неметаллические материалы


Скачать 249.24 Kb.
НазваниеНеметаллические материалы
АнкорМатериаловедение
Дата05.10.2022
Размер249.24 Kb.
Формат файлаrtf
Имя файла724797.rtf
ТипЛитература
#716053
страница1 из 3
  1   2   3

Размещено на http://www.allbest.ru/

Содержание
Введение

1. Пластические массы

2. Резины

3. Стекла

4. Керамические материалы

5. Композиционные материалы

Литература

Введение
Неметаллические материалы – это органические, и неорганические полимерные материалы: различные виды пластических масс, композиционные материалы на неметаллической основе, каучуки и резины, клеи, герметики, лакокрасочные покрытия, а также графит, стекло, керамика. В качестве конструкционных материалов они служат важным дополнением к металлам, в некоторых случаях с успехом заменяют их, а иногда сами являются незаменимыми. Достоинством неметаллических материалов являются такие их свойства, как достаточная прочность, жесткость и эластичность при малой плотности, светопрозрачность, химическая стойкость, диэлектрические свойства, делают эти материалы часто незаменимыми. Также следует отметить их технологичность и эффективность при использовании. Трудоемкость при изготовлении изделий из неметаллических материалов в 5–6 раз ниже, они в 4–5 раз дешевле по сравнению с металлическими. В связи с этим непрерывно возрастает использование неметаллических материалов в машиностроении автомобилестроении, авиационной, пищевой, холодильной и криогенной технике и др.

Двигатели внутреннего сгорания из керамики обходятся без водяного охлаждения, что невозможно при изготовлении их из металла; обтекатели ракет делают только из неметаллических материалов (графит, керамика). Трудно представить домашнюю утварь, аудио- и видеотехнику, компьютеры, спортивное снаряжение, автомобили и другую технику без неметаллических материалов – пластмассы, ламината, керамики, резины, стекла и др.

Основой неметаллических материалов являются полимеры, главным образом синтетические. Создателем структурной теории химического строения органических соединений является А.М. Бутлеров (1826–1886 гг.). Промышленное производство первых пластмасс (фенопластов) – результат работ, проведенных Г.С. Петровым (1907–1914 гг.). С.В. Лебедевым впервые в мире осуществлен промышленный синтез каучука (1932 г.). Н.Н. Семеновым разработана теория цепных реакций и распространена на механизм цепной полимеризации. Успешное развитие химии и физики полимеров связано с именами видных ученых: П.П. Кобеко, В.А. Каргина, А.П. Александрова, С.С. Медведева, С.Н. Ушакова, В.В. Коршака и др. Развитие термостойких полимеров связано с именем К.А. Андрианова.

В области создания полимерных материалов большой вклад внесен зарубежными учеными: К. Циглером (ФРГ), Д. Наттом (Италия) и др.

1. Пластические массы
Пластмассы – это синтетические материалы, получаемые на основе органических и элементоорганических полимеров. Свойства пластмасс определяются свойствами полимеров, составляющих их основу.

По составу пластмассы могут быть простыми (термопласты – химические полимеры линейной или разветвленной структуры) и сложными (которые помимо полимеров, содержат различные добавки: наполнители, красители, пластификаторы, отвердители и т.д.).

Связующее вещество является обязательным компонентом. Такие простые пластмассы, как полиэтилен, вообще состоят из одного связующего вещества.

Наполнителями служат твердые материалы органического и неорганического происхождения. Наполнители придают пластмассам прочность, твердость, теплостойкость, а также некоторые специальные свойства, например антифрикционные или наоборот фрикционные. Кроме того, наполнители снимают усадку при прессовании.

В зависимости от наполнителя различают пресс-порошковые, волокнистые и слоистые пластмассы, а также пенопласты, когда наполнитель применяется в виде газа (воздух или нейтральный газ).

Пластификаторы представляют собой нелетучие жидкости с низкой температурой замерзания. Растворяясь в полимере, пластификаторы повышают его способность к пластической деформации. Пластификаторы вводят для расширения температурной области высокоэластического состояния, снижения жесткости пластмасс и температуры хрупкости. В качестве пластификатора применяют сложные эфиры, низкомолекулярные полимеры и др. Пластификаторы должны оставаться стабильными в условиях эксплуатации. Их наличие улучшает морозостойкость и огнестойкость пластмасс.

В состав пластмасс могут также входить стабилизаторы, отвердители, красители и другие вещества.

Стабилизаторы вводят в пластмассы для повышения долговечности. Светостабилизаторы предотвращают фотоокисление, а антиокислители – термоокислительные реакции.60

Отвердители изменяют структуру полимеров, влияя на свойства пластмасс. Чаще используют отвердители, ускоряющие полимеризацию. К ним относятся оксиды некоторых металлов, уротропин и др.

Специальные химические добавки вводят с различными целями; например, сильные органические яды – фунгициды – для предохранения пластмасс от плесени и поедания насекомыми в условиях тропиков.

Смазывающие вещества (стеарин, олеиновая кислота) применяют для предотвращения прилипания пластмассы к оборудованию при производстве и эксплуатации изделий.

Красители и пигменты придают пластмассам желаемую окраску.

Для пластмасс характерны следующие свойства:

  • низкая плотность (обычно 1–1,8 г/см3, в некоторых случаях 0,02–0,04 г/см3);

  • высокая коррозионная стойкость. Пластмассы не подвержены электрохимической коррозии, на них не действуют слабые кислоты и щелочи. Существуют пластмассы, стойкие к воздействию концентрированных кислот и щелочей. Большинство пластмасс безвредны в санитарном отношении;

  • высокие диэлектрические свойства;

  • хорошая окрашиваемость в любые цвета. Некоторые пластмассы могут быть изготовлены прозрачными, не уступающими по своим оптическим свойствам стеклам;

  • механические свойства широкого диапазона. В зависимости от природы выбранных полимеров и наполнителей пластмассы могут быть твердыми и прочными или же гибкими и упругими. Ряд пластиков по своей механической прочности превосходит чугун и бронзу. При одной и той же массе пластмассовая конструкция может по прочности соответствовать стальной;

  • антифрикционные свойства. Пластмассы могут служить полноценными заменителями антифрикционных сплавов (оловянных бронз, баббитов и др.). Например, полиамидные подшипники скольжения длительное время могут работать без добавления смазочного материала;

  • высокие теплоизоляционные свойства. Все пластмассы, как правило, плохо проводят теплоту, а теплопроводность таких теплоизоляторов, как пено- и поропласты, почти в 10 раз меньше, чем у обычных пластмасс;

  • хорошие технологические свойства.

Изделия из пластмасс изготавливают способами безотходной технологии (без снятия стружки) – литьем, прессованием, формованием с применением невысоких давлений или в вакууме.

Недостатком большинства пластмасс является их невысокая теплостойкость (100–120 °С). В настоящее время верхний температурный предел для некоторых пластмасс поднялся до 300–400°С. Пластмассы могут работать при умеренно низких температурах (до -70 °С), а в отдельных случаях – при криогенных температурах. Недостатками пластмасс также являются их низкая твердость, склонность к старению, ползучесть, нестойкость к большим статическим и динамическим нагрузкам. Однако достоинства пластмасс значительно превосходят их недостатки, что обусловливает высокие темпы роста их ежегодного производства.

Свойства пластмасс зависят от состава отдельных компонентов, их сочетания и количественного соотношения, что позволяет изменять характеристики пластиков в достаточно широких пределах.

По типу пластмасс:

В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на:

  • Термопласты (термопластичные пластмассы) — при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние;

  • Реактопласты (термореактивные пластмассы) — в начальном состоянии имеют линейную структуру макромолекул, а при некоторой температуре отвержденияприобретают сетчатую. После отверждения не могут переходить в вязкотекучее состояние. Рабочие температуры выше, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.

Также газонаполненные пластмассы — вспененные пластические массы, обладающие малой плотностью.

По характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты), получаемые на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1–3%). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).

Термореактивные полимеры после отверждения и перехода связующего в термостабильное состояние хрупки, часто дают большую усадку (до 10–15%) при их переработке, поэтому в их состав вводят усиливающие наполнители.

По виду наполнителя пластмассы делят на порошковые (карболита) с наполнителями в виде древесной муки, графита, талька и др.; волокнистые с наполнителями в виде очесов хлопка и льна (волокниты), стеклянного волокна (стекловолокниты), асбеста (асбоволокниты); слоистые, содержащие листовые наполнители (листы бумаги в гетинаксе, хлопчатобумажные, стеклянные, асбестовые ткани в текстолите, стеклотекстолите и асботекстолите, древесный шпон в древеснослоистых пластиках); газонаполненные (наполнитель – воздух или нейтральные газы – пено- и поропласты).

По применению пластмассы можно подразделить на силовые (конструкционные, фрикционные и антифрикционные, электроизоляционные) и несиловые (оптически прозрачные, химически стойкие, электроизоляционные, теплоизоляционные, декоративные, уплотнительные, вспомогательные). Однако это деление условно, так как одна и та же пластмасса может обладать разными свойствами.
2. Резины
Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.

Вулканизация – превращение каучука в резину, осуществляемое с участием так называемых вулканизирующих агентов и под действием ионизирующей радиации.

Каучуки являются полимерами с линейной структурой и при вулканизации превращаются в высокоэластичные редкосетчатые материалы – резины. Вулканизирующими добавками служат сера и другие вещества. С увеличением содержания вулканизатора (серы) сетчатая структура резины становится более частой и менее эластичной. При максимальном насыщении серой (30–50%) получают твердую резину (эбонит), при насыщении серой 10–15% – полутвердую резину. Обычно в резине содержится 5–8% серы.

Для ускорения вулканизации вводят ускорители, например оксид цинка.

Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку – главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы. При нормальной температуре резина находится в высокоэластическом состоянии, и ее эластические свойства сохраняются в широком диапазоне температур.

Главным исходным компонентом резины, придающим ей высокие эластические свойства, является каучук. Каучуки бывают натуральные (НК) и синтетические (СК). Натуральный каучук получают коагуляцией латекса (млечного сока) каучуконосных деревьев, растущих в Бразилии, Юго-Восточной Азии, на Малайском архипелаге. Синтетические каучуки (бутадиеновые, бутадиен-стирольные и др.) получают методами полимеризации. Впервые синтез бутадиенового каучука полимеризацией бутадиена, полученного из этилового спирта, осуществлен в 1921 г. русским ученым С.В. Лебедевым. Разработаны методы получения синтетических каучуков на основе более дешевого сырья, например нефти и ацетилена.

Помимо каучука в состав резин входят:

Вулканизирующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата. Обычно в качестве таких веществ применяют серу и селен, для некоторых каучуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения – тиурам (тиурамовые резины).

Ускорители процесса вулканизации: полисульфиды, оксиды свинца, магния и другие влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов. Ускорители проявляют свою наибольшую активность в присутствии оксидов некоторых металлов (цинка и др.), называемых поэтому в составе резиновой смеси активаторами.

Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют противостарители химического и физического действия. Действие первых заключается в том, что они задерживают окисление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука (применяются альдоль, неозон Д и др.). Физические противостарители (парафин, воск) образуют поверхностные защитные пленки, они применяются реже.

Мягчители (пластификаторы) облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины. В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат, растительные масла. Количество мягчителей составляет 8–30% массы каучука.

Наполнители по воздействию на каучук подразделяют на активные (усиливающие) и неактивные (инертные). Активные наполнители (углеродистая сажа и белая сажа – кремнекислота, оксид цинка и др.) повышают механические свойства резин: прочность, сопротивление истиранию, твердость. Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины.

Часто в состав резиновой смеси вводят регенерат – продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.

Красители минеральные или органические вводят для окраски резин. Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.

В настоящее время резиновые материалы классифицируются по виду сырья, виду наполнителя, степени упорядочения макромолекул и пористости, экологическим способам переработки, типам теплового старения и изменению объема после пребывания в нефтяной жидкости.

Классификация по виду сырья учитывает наименование каучуков, явившихся исходным сырьем при производстве резиновых материалов: НК – натуральный каучук, СКБ – синтетический каучук бутадиеновый, СКС – бутадиен-стирольный каучук, СКИ – синтетический каучук изопреновый, СКН – бутадиен-нитрильный каучук, СКФ – синтетический фторосодержащий каучук, СКЭП – сополимер этилена с пропиленом, ХСПЭ – хлорсульфополиэтилен, БК – бутилкаучук, СКУ – полиуретановые каучуки.

По виду различают наполнители для резиновых материалов порошкообразные и ткани.

По степени упорядочения макромолекул и пористости резиновые материалы могут быть мягкими, жесткими (эбонитовыми), пористыми (губчатыми) и пастообразными. Плотность губчатой резины 100–750 кг/м3.

Среди технологических способов переработки для резиновых материалов используются выдавливание, прессование и литье.

По тепловому старению существуют семь типов: Т07, …, Т25.

По изменению объема после пребывания в нефтяной жидкости различают семь классов: К1,…, К7.

Наиболее крупные потребители резины – шинная промышленность (свыше 50%) и промышленность резинотехнических изделий (более 22%).
3. Стекла
Неорганическое стекло – это однородное аморфное вещество, получаемое при затвердевании расплава оксидов. Оно не имеет определенной точки плавления или затвердевания и при охлаждении переходит из расплавленного, жидкого состояния в высоковязкое состояние, а затем в твердое, сохраняя при этом неупорядоченность и неоднородность внутреннего строения.

В составе стекла могут присутствовать оксиды трех типов: стеклообразующие, модифицирующие и промежуточные. Стеклообразующими являются оксиды кремния, бора, фосфора, германия, мышьяка. К модифицирующим оксидам относятся оксиды щелочных (Na, К) и щелочноземельных (Са, Мg, Ва) металлов. Модифицирующие оксиды вводят в процессе варки стекол. Глинозем А1203 повышает механическую прочность, а также термическую и химическую стойкость стекол. При добавке В203 повышается скорость стекловарения, улучшается осветление и уменьшается склонность к кристаллизации. Оксид свинца РbО, вводимый главным образом при изготовлении оптического стекла и хрусталя, повышает показатель светопреломления. Оксид цинка ZnO понижает температурный коэффициент линейного расширения стекла, благодаря чему повышается его термическая стойкость. Промежуточными являются оксиды алюминия, свинца, титана, железа, которые могут замещать часть стеклообразующих оксидов.

Технологические добавки, вводимые в состав стекол, делят по их назначению на следующие группы:

осветлители – вещества, способствующие удалению из стекломассы газовых пузырей (сульфат натрия, плавиковый шпат);

обесцвечиватели – вещества, обесцвечивающие стекольную массу;

глушители – вещества, делающие стекло непрозрачным.

Стеклообразующие оксиды (например, SiO2, А1203, В2О3, Р203) образуют пространственную сетку из однородных звеньев-полиэдров, а модифицирующие оксиды, располагаясь внутри ячеек сетки, ослабляют или разрывают связи в стеклообразующих оксидах и снижают прочисть, термо- и химическую стойкость стекла, но позволяют регулировать температуру его размягчения и другие свойства .

Химический состав стекла можно изменять в широких пределах, поэтому и свойства стекла могут быть различными. По химическому составу в зависимости от природы стеклообразующих оксидов различают силикатное, алюмосиликатное, боросиликатное, алюмоборосиликатное и другие виды стекла.

В зависимости от содержания модификаторов стекло может быть щелочным и бесщелочным.

По назначению различают строительное (оконное, стеклоблоки), бытовое (стеклотара, посуда) и техническое (оптическое, электротехническое, химическое и др.) стекло.

Основные свойства стекла

Свойства неорганических стекол изотропны. К основным свойствам носятся:
  1   2   3


написать администратору сайта