Главная страница
Навигация по странице:

  • Свойства полимеров

  • -6- Рис. 3. Термомеханическая кривая аморфного полимерного материала

  • Зависимость деформации полимера от времени

  • Падение напряжения в деформированном образце полимера

  • Кривые растяжения и сокращения полимерного образца

  • реферат матереаловедение. ре. Неметаллические материалы


    Скачать 0.82 Mb.
    НазваниеНеметаллические материалы
    Анкорреферат матереаловедение
    Дата09.12.2021
    Размер0.82 Mb.
    Формат файлаdocx
    Имя файларе.docx
    ТипЛитература
    #298000
    страница2 из 7
    1   2   3   4   5   6   7

    Классификация полимеров

    В зависимости от молекулярной массы (ММ), полимеры делятся на:




    — мономеры (с небольшой ММ);
    — олигомеры (с ММ менее 540);
    — полимеры (высокомолекулярные, с ММ от пяти тысяч до пятисот тысяч);
    — сверхвысокомолекулярные полимеры с ММ более полумиллиона.

    По степени разветвленности молекул:




    — линейные (молекула состоит из цепочки мономеров), к ним относится натуральный каучук, эластомеры и другие полимеры высокой эластичности;
    — разветвленные (цепочка из звеньев имеет боковые ответвления), например, амилопектин;
    — сетчатые или сшитые (между соседними макромолекулами существуют поперечные связи), нерастворимые и неэластичные полимеры, например, эпоксидные смолы в стадии отверждения.

    -4-

    По составу мономеров:




    — гомополимеры, состоящие из одного вида звеньев, например, ПВХ, целлюлоза;
    — сополимеры, состоящие из звеньев разного строения (многие полимеры с улучшенными свойствами).

    В зависимости от того, как полимеры реагирует на нагревание, их разделяют на:


    — термопласты, после охлаждения возвращающиеся в исходное состояние без потери физических свойств (этими качествами обладают линейные и разветвленные полимеры);
    — реактопласты, после нагревания частично и необратимо разрушаются и не восстанавливают исходных свойств (сетчатые пространственные полимеры).

    По структуре полимеры разделяют на:




    — кристаллические, содержащие более 2/3 кристаллических структур (полиэтилен низкого давления, полипропилен, тефлон);
    — аморфные, содержащие не более нескольких процентов кристаллических структур (акриловое стекло, полистирол и все сетчатые полимеры);
    — аморфно-кристаллические, содержащие от 25 до 70% кристаллических структур (полиэтилен высокого давления).

    По происхождению:




    — природные (белки, коллоидная сера, натуральный каучук, целлюлоза, крахмал);
    — синтетические (фенолформальдегидные смолы, полистирол).

    По химическому составу:




    — органические;
    — неорганические, не содержащие органических звеньев ни в главной цепи, ни в ответвлениях макромолекулы (пластическая сера, кристаллы кварца);

    -5-

    — элементоорганические, макромолекулы которых состоят из углеводородных групп и неорганических звеньев (кремний-, боро-, фосфорорганические полимеры и др.).

    Свойства полимеров
    Особенности строения полимеров влияют на их физикомеханические и химические свойства. Вследствие высокой молекулярной массы полимеры не могут переходить в парообразное состояние, поскольку давление паров полимеров незначительно и при нагреве выше определенной температуры они разлагаются.

    Полимеры могут находиться в четырех физических состояниях: кристаллическом, стеклообразном, высокоэластичном и вязкотекучем. Следует отметить, что при определении физико-механических свойств полимеров их полидисперсность приводит к 6значительному разбросу показателей.

    Физико-механические свойства полимеров зависят от их структуры и физического состояния, которое в зависимости от температуры может быть стеклообразным, высокоэластичным и вязкотекучим. Все три состояния можно наблюдать у образца аморфного термопласта (винипласта), если подвергнуть его нагреву,

    периодически нагружать сжимающей нагрузкой, соблюдая постоянство нагрузки и времени ее воздействия на образец при различной температуре, и замерять его деформацию. В результате данного опыта можно получить термомеханическую кривую, отражающую зависимость деформации образца от температуры его нагрева (рис. 3).

    В стеклообразном состоянии полимерный материал сопротивляется воздействию температуры, а его деформация является, в основном, упругой, т. е. после снятия нагрузки деформация быстро исчезает. При этом атомы, входящие в состав молекулярной цепи, совершают колебательное движение около положения равновесия, т. е. движения звеньев и перемещения макромолекул не происходит.




    -6-

    Рис. 3. Термомеханическая кривая аморфного полимерного материалаI — зона стеклообразного состояния; II — зона высокоэластического состояния; III — зона вязкотекучего состояния; tст — температура стеклования; tтек — температура текучести

    В высокоэластическом состоянии наблюдается значительная деформация полимерного материала, которая после снятия нагрузки исчезает за некоторое время. Такая деформация называется высокоэластической или уcловно остаточной. Высокоэластичное состояние полимера наступает при его нагреве выше температур стеклования. Высокоэластическое состояние присуще только высокополимерам и характеризуется способностью материала к большим обратным изменениям формы при небольших нагрузках (звенья колеблются и макромолекула приобретает способность изгибаться).

    В вязкотекучем состоянии полимера наблюдается остаточная деформация. При этом происходит перемещение макромолекул относительно друг друга. Вязкотекучее состояние напоминает жидкое состояние, но отличается от него очень большой вязкостью (подвижна вся макромолекула).

    С изменением температуры линейный или разветвленный полимер может переходить из одного физического состояния в другое.

    Примером стеклообразного состояния полимера при температуре 20 °С может служить полистирол (материал, из которого изготовляют большое количество корпусных деталей радиотехнического назначения), высокоэластического состояния — каучук, вязкотекучего — полиизобутилен.

    У кристаллических термопластов переход в вязкотекучее состояние может происходить, минуя высокоэластическое состояние. Полимеры с сетчатой структурой находятся, в

    основном, в стеклообразном состоянии, поскольку вязкотекучее состояние для них невозможно, а высокоэластическое затруднено.

    В машиностроении полимеры используются, как правило, в стеклообразном и высокоэластическом состояниях. Переработка полимеров в изделия осуществляется в вязкотекучем состоянии (реже — в высокоэластическом состоянии).

    В процессе эксплуатации деталей важно знать особенности протекания релаксационных процессов. Всякий релаксационный процесс заключается в стремлении системы к восстановлению нарушенного равновесия в результате теплового движения молекул. Если при нормальной температуре растянуть в пределах упругости стальной образец, а затем снять нагрузку, то деформация образца исчезнет практически сразу. При снятии нагрузки у растянутого образца из мягкой резины деформация не исчезнет за длительный период времени (месяцы, годы).

    -7-

    Таким образом, для низкомолекулярных веществ, например металлов, релаксационные процессы в пределах жаропрочности протекают за миллионные доли секунды. Для полимерных материалов релаксационные процессы «растянуты» во времени, что связано с наличием длинных и запутанных макромолекул, которые не успевают отреагировать на снятие или приложение нагрузки. Эта специфика протекания релаксационных процессов влияет на поведение полимеров под нагрузкой, что имеет важное практическое значение в инженерной практике.

    Для прогнозирования эксплуатационных характеристик деталей из полимерных материалов необходимо учитывать такие явления, как ползучесть, упругое последействие, релаксация напряжения, механический гистерезис. Если приложить к образцу полимера достаточно большую нагрузку, то постепенно в нем будет развиваться деформация, которая, в общем случае, складывается из упругой деформации, а также высокоэластической и остаточной (рис. 4).



    Рис. 4Зависимость деформации полимера от времени при действии постоянного достаточно большого напряжения (ползучесть) и после снятия нагрузки (упругое последействие): ε1 — упругая деформация: ε2 — высокоэластическая деформация; ε3 — остаточная деформация; σ — напряжение

    Явление ползучести полимерных материалов под действием постоянной нагрузки необходимо учитывать при прогнозировании эксплуатационных свойств полимеров. С повышением температуры среды ползучесть полимеров увеличивается, поскольку облегчаются условия распрямления макромолекул, а при снижении уровня нагрузки ползучесть уменьшается. Упругое последействие (рис. 4) вызывает изменение линейных размеров деталей, изготовленных из полимеров методом литья под давлением.

    Если прекратить деформирование растянутого на разрывной машине образца полимера и следить за стрелкой силоизмерителя, то можно видеть, как постепенно стрелка вернется к делению «ноль». Это свидетельствует о том, что напряжение в образце исчезло, и произошла релаксация напряжения (рис. 5). На практике релаксация напряжения проявляется, например, в виде ослабления пружин.

    -8-



    Рис. 5. Падение напряжения в деформированном образце полимера с течением времени после прекращения процесса деформации (релаксация напряжения)

    Механический гистерезис имеет место, например, при многократном растяжении образца или детали (рис. 6).



    Рис. 6Кривые растяжения и сокращения полимерного образца (механический гистерезис)

    При этом кривая разгрузки не совпадает с кривой нагрузки. Это явление используется в устройствах для гашения вибрации.

    Под старением полимерных материалов понимается самопроизвольное необратимое изменение их важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении. Причинами старения являются свет, теплота, а также кислород, озон и другие немеханические факторы. Старение ускоряется при многократных деформациях; менеесущественно на старение влияет влага. Различают старение тепловое, световое, озонное и атмосферное.

    Для замедления процессов старения в полимерные материалы добавляются стабилизаторы (различные органические вещества) и антиоксиданты (амины, фенолы и др.). Длительность эксплуатации стабилизированных материалов значительно возрастает. Срок наступления хрупкости

    -9-

    полиэтилена, стабилизированного сажей, составляет свыше 5 лет. Трубы из поливинилхлорида могут эксплуатироваться 10…25 лет.

    К важным свойствам полимеров относится также их радиационная стойкость. Под действием ионизирующих излучений в полимерах происходят ионизация и возбуждение, которые сопровождаются разрывом химической связи и образованием свободных радикалов. Наиболее устойчивы к радиации полимеры, имеющие бензольное кольцо в виде боковой группы (полистирол).

    Вакуум действует на полимерные материалы по-разному. Ухудшение их свойств связано с выделением из материала различных добавок (пластификаторов, стабилизаторов) и протеканием процессов деструкции. Ориентированные полимеры (полиамиды, полиэтилен, полипропилен) имеют одинаковую долговечность в вакууме и на воздухе.

    Абляционная стойкость (абляция — унос некоторой массы вещества с поверхности твердого тела обтекающим эту поверхность потоком горячих газов) определяется устойчивостью материала к механической, термической и термоокислительной деструкции. На абляционную стойкость полимера влияет также его структура. Материалы на основе полимеров линейного строения имеют низкую стойкость (происходит деполимеризация и деструкция). Температура абляции не превышает 900 °С. Материалы на основе термостойких полимеров лестничного или сетчатого строения (фенолоформальдегидные, кремнийорганические и др.) имеют более высокую стойкость к абляции. В них протекают процессы структурирования и обезуглероживания (карбонизации). Температура абляции может достигать 3000 °С.

    Для увеличения абляционной стойкости в полимеры вводят армирующие наполнители (например, стеклянные волокна). Стеклянные волокна оплавляются. При этом расходуется много теплоты. Теплопроводность пластиков в сотни раз меньше, чем теплопроводность металлов, поэтому при кратковременном действии высокой температуры внутренние слои материала нагреваются до 200…350 °С и сохраняют механическую прочность.

    Механическая прочность, эластичность, электроизоляционные и другие технические свойства полимеров обусловливают их широкое применение. Полимеры служат основой пластмасс, химических волокон, резины, лакокрасочных материалов, клеев, герметиков, ионообменных смол. Природные биополимеры составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

    В технике полимеры редко используют в чистом виде. Наиболее широкое применение они находят в виде пластмасс, в состав которых, кроме основного компонента (полимера, играющего роль связующего вещества), вводят различные добавки, оказывающие определенное влияние на свойства пластмасс.
    1   2   3   4   5   6   7


    написать администратору сайта