бх коллоквиум 2 стом. обмен углеводов для студентов стоматологического факультета
Скачать 46.28 Kb.
|
ЗАДАЧИ ДЛЯ ПОДГОТОВКИ К КОЛЛОКВИУМУ № 2 ПО ТЕМЕ «ОБМЕН УГЛЕВОДОВ» для студентов стоматологического факультета Переваривание, всасывание, транспорт глюкозы в ткани. ПФП, гликолиз, полное окисление глюкозы
У ребенка лактазная недостаточность т.к. при нагрузке глюкозой и галактозой сахар крови повысился на 55мг% (норма 50 и более мг%), а при нагрузке лактозой сахар повысился на 15мг%.
У ребенка нарушено всасывание моносахаров в энтороциты т.к. нагрузочный тест с применением глюкозы и галактозы сопровождается повышением сахара крови на 15мг%
У больного, по видимому, нарушена функция поджелудочной железы т.к. не работает панкреатическая амилаза (зерна крахмала в кале), наблюдается гипергликемия(возможно нарушение функционирования инсулина). Следует назначить биохимический анализ крови на панкреатические ферменты(панкреатическая амилаза, липаза)
Один из способов транспорта глюкозы в клетку является симпорт с ионами натрия. Натрий двигается по градиенту концетрации. Градиент концентрации создает Na K-АТФаза(из клетки выводится 3 иона натрия, в клетку заходит 2 иона калия)
Болезнь Гирке(дефект глюкозо-6-фосфотазы нарушение образования свободной глюкозы из глюкозо-6-фосфата). Глюкозо-6-фосфат накапливается активируется пентозофосфатного путь окисления глюкозо-6-фосфатаобразуется рибозо-5-фосфат
Перед деление клетка нуждается в рибозо-5-фосфате активируется пентозофосфатный путь окисления глюкозы.
В процессе пентозофосфатного пути образуется NADF, который используется для синтеза стероидных гормонов, а также для работы глутатионпероксидазы(нейтрализация активных форм кислорода предотвращение перекисного окисления липидов)
Анемия развивается вследствие перекисного окисления эритроцитов(+ преципитация гемоглобина) и лейкоцитов. Т.к. нарушен пентозофосфатный цикл(он является главным источником NADF, который нужен для работы глутатионпероксидазы , глутатионредуктазы нейтрализация активных форм кислорода)
При низком содержании дегидрогеназы глюкозо-6-фосфата нарушается пентозофосфатный цикл недостаток NADF анемия(см 12 задачу)
Дефицит NADF приводит к накоплению метгемоглобина и увеличению образования активных форм кислорода, вызывающих окисление SH-групп в молекулах глутатиона. Молекулы метгемоглобина образуют дисульфидные связи между протомерами и агрегируют с образованием телец Хайнца.
ГЕКСОКИНАЗА для большинства киназ в качестве одного из субстратов выступает не молекула АТФ, а комплекс Mg2+-ATФ. В этом случае ион Mg2+ не взаимодействует непосредственно с ферментом, а участвует в стабилизации молекулы АТФ и нейтрализации отрицательного заряда субстрата, что облегчает его присоединение к активному центру фермента Инсулин: - активирует гексокиназу и глюкокиназу, запуская таким образом процесс фосфорилирования глюкозы - ключевую биохимическую реакцию, стоящую в начале пути как анаэробного, так и аэробного расщепления углеводов; В обоих случаях измениться, повыситься.
При повышенной нагрузке происходит анаэробный гликолиз накопление лактата в мышцах боль в мышцах
При нарушениях кровообращения происходит анаэробный гликолизнакопление лактата
Хрусталик глаза обеспечивается специфическим путем катаболизма глюкозы(гликолиз). АТФ синтезируется субстратным путем.
Т.к. аэробного гликолиза происходить в данных условиях не может (барбитураты являются ингибиторами NADH-дегидрогеназы), то происходит анаэробный гликолиз. При окислении 1 молекулы глюкоза анаэробным путем синтезируется 2 АТФ 1 моль глюкозы=2 моль АТФ
Существует 2 вида мышечных волокон: красные(медленноутомляемые) и белые (быстроутомляемые). В красных волокнах содержится много миоглобина и митохондрий, следовательно работает аэробная система энергообразования. В белых волокнах происходит анаэробный гликолиз ( энергия производится быстрей, но быстро исчерпывается)
При дефиците тиамина (вит В1) нарушается работа пируватдегигрогеназного комплекса пируват не переходит в ацетил-КоА пируват восстанавливается до лактата лактат-ацидоз.
Мозг крайне чувствителен к гипогликемии. При этом содержит мало гликогена(запас быстро расходуется), поэтому при интенсивной умственной работе возникает чувство голода. Гликогенез, гликогенолиз, глюконеогенез.
В процессе гликогеногенеза затрачивается 1 молекула УТФ и 2 АТФ (одна на фосфорилирование глюкозы, другая для фосфорилирования УДФ) Для включения в молекулу гликогена 100 молекул глюкозв, нужно затратить 100 УТФ и 200 АТФ.
При недостатке лизсомальной гликозидазы нарушается гликогенолизмышца постоянно нуждается в поставке глюкозы т.к. она не образуется в мышце. При недостатке гликозидаз печени нарушается снабжение всего организма глюкозой, что может привести к смерти.
При кратковременных мышечных нагрузках в качестве источника энергии используется: креатинфосфат (первые 20-30 секунд)+ гликоген мышц(2-3 минуты). Кретинфосфат взаимодействует с АДФ креатин + АТФ, далее гликоген мышц мобилизилуется до глюкозо-6-фосфата, который подвергается гликолизу(при коротких нагрузках анаэробному) с образованием лактата. По истечении 2-3 минут интенсивной работы содержание лактата становиться избыточным мышца нуждается в отдыхе. Так же следует отметить, что происходит выброс адреналина.
Биотин является коферментом карбоксилаз. В частности пируватсарбоксилаза, которая превращает пируват в оксалоацетат. Глюконеогенез из аланина происходит через образование пирувата(который, в свою очередь превращается в оксалоацетат). В глюконеогенезе из аспартата не участвуют карбоксилазы недостаток биотина не нарушает синтеза глюкозы из аспартата.
В основном возникает при голодании, когда из-за недостаточного числа нормальных гепатоцитов не поддерживается постоянный уровень глюкозы крови(нарушение как содержания гликогена, так и глюконеогенеза).
запускаются процессы трансаминирования. А дальше, процесс гюконеогенеза. Часть реакций глюконеогенеза происходит в митохондриях. Аланин транспортируется в печень и образует пируват, включаясь в глюкозо-аланиновый цикл (глюконеогенез). Аспартат при попадании в клетку активирует малат-аспартатный челночный механизм, в результате которого при окислении 1 молекулы глюкозы получим 28 молекул АТФ. (см.лекцию)
Фруктозо-1,6-бифосфотаза отщепляет фосфатную группу от фруктозо-1,6-бифосфата(с оразованием глюкозо-6-фосфата) при недостатке нарушается процесс глюконеогенеза натощак развивается гипогликемия. При избытке фруктозо-1,6-бифосфата запускаются реакции гликолиза лактацидоз.
гипоглицин ингибирует окисление жирных кислот.Организму нужна глюкоза. А для синтеза глюкозы из пирувата нужны молекулы атф. Особенности обмена углеводов в разных тканях.
Фосфоглицератмутаза превркщает 1,3 дифосфоглицерат в 2,3 дифосфоргицерат.Он нужен, чтобы снижать сродство гемоглобина к кислороду.
Миокард, временно лишенный поступления кислорода, может получать АТФ в результате окисления лактата, поступившего в сердечную ткань вместе с кровью. При этом также будет образовываться углекислота и вода. ???
ЛДГ, присутствующая в сердце, необходима для того, чтобы можно было окислять лактат до пирувата в случае приноса его к сердечной ткани с током крови или же его возникновении в случае кислородного голодания (наличие лактата в сердечной ткани опасно, так как при поступлении кислорода к сердцу, лактат начинает использовать его для собственных реакций окисления,а кислород на самом деле больше необходим для окисления жирных кислот, являющихся главным источником АТФ для миокарда. Сам лактат тоже способен к продукции АТФ в ходе своего окисления, но в очень малых количествах) . При наличии кислорода полученный пируват может в ходе окислительного декарбоксилирования превращаться в ацетил-Ко-А и уже использоваться в ЦТК.
При введении глюкозы устойчивость организма ко многим токсическим веществам повышена, потому что данный моносахарид, попав в организм, подвергается гидролизу, в ходе которого образуются молекулы восстановленного НАДН, от наличия которого зависит возможность клеточного дыхания, а значит - и образованию большего количества АТФ, необходимого для работы клеток иммунной системы. Кроме того, восстановленная форма НадН может участвовать в процессах микросомального гидроксилирования, в ходе которого токсические вещества становятся растворимыми и выводятся из организма с мочей. P.S. если глюкоза вступает например в пентозофосфатный цикл, тогда будут образовываться еще и молекулы НАДФН, которые также используются в вышеупомянутых процессах. Сахар крови и его регуляция.
В данном случае при определении уровня сахара в крови по методу Хагедорна-Йенсена сахар будет в норме (4,4 - 4,6 мМоль). А при определении сахара в моче о методу Ниландера проба будет положительной. Это можно объяснить тем, что витамин С, как и глюкоза, обладает окислительно-восстановительными свойствами, а значит, при добавлении к моче соли висмута витамин будет окисляться (поскольку среда мочи - щелочная), и сам висмут будет выпадать в виде черного осадка.
При соблюдении углеводной диеты уровень сахара , измеренный у человека натощак, приближен к нижней границе нормы, поскольку данная диета заключается в потреблении строго определенного количества углеводов (меньше, чем при обычном питании), а значит, организм все равно будет получать сахар извне, а вследствие его малого, но удовлетворяющего норму количества, не будет наблюдаться слишком активного запасания углеводов в виде жира. То есть малое количество потребляемых углеводов будет давать малое количество сахара в кровь (нормальное, но малое). При белковой же диете из рациона полностью исключаются углеводы. Это значит, что организму придется брать сахар из собственных запасов :в случае глюкозы - гликогенолиз, но непродолжительное время, а после - глюконеогенез. Поскольку в процессе глюконеогенеза глюкоза образуется из различных неуглеводных соединений (пируват, лактат, аминокислоты, глицерин) , значит, у организма будет сразу несколько источников синтеза глюкозы. Кроме того, любое голодание - это стресс для организма, поэтому надпочечниками обязательно будет выделяться адреналин и кортизол, а поджелудочной железой - глюкагон; данные гормоны индуцируют и ускорят процесс.
. После приема кофеина сахар в крови повысится, так как в случае ингибирования фосфодиэстеразы, цАМФ будет продолжать свою работу - активировать протеинкиназу, которая, в свою очередь, активируя киназу фосфоилазу, приведет к активации гликогенфосфорисазы и ингибированию гликогенсинтазы. А раз гликогенолиз будет продолжаться, значит и уровень сахара в крови будет расти.
В данном случае у спортсмена наблюдается гипергликемия, но не патологическая, а эмоциональная. Это можно объяснить, что перед соревнованием человек испытал стресс, на это моментально отреагировала симпатическая нервная система, а вследствие - надпочечники. В результате в кровь поступило изрядное количество адреналина, что привело к активации аденилатциклазного механизма, а следовательно - к активации гликогенфосфорилазы и ингибированию гликогенсинтазы. Произошел гликогенолиз в печени, и глюкоза вышла в кровь. Кроме того, активация симпатической НС в целом поспособствовала более быстрому распаду гликогена и помешала переходу углеводов в жир.
У первого студента сахар крови в норме. У второго - физиологическая гипергликемия, связная с изучением крови, взятой в абсорбтивный период. Гипергликемия объясняется в данном случае тем, что сахар поступил в ЖКТ, усвоился, всосался в кровь но еще и не перешел в клетки организма и не подвергся фосфорилированию. Данный анализ рекомендовано делать строго натощак, так как в случае незнания о том, что больной употребил до этого сладкое, можно принять физиологическую норму за патологию и применить лечение, способное нанести здоровому человеку вред. Нормальный уровень сахара в крови может наблюдаться только в постабсорбтивный период. Концентрация глюкозы в крови в норме - 3,3 - 5,5ммоль (60 - 100 мг/дл). В абсорбтивный период - до 8 ммоль (150 мг/дл). Разница крови, взятой из вены и из пальца есть: венозная кровь имеет отношение к обмену веществ, так как сама "побывала" в органах, в том числе и в печени, и может дать ясные результаты об уровне сахара, например. А кровь, взятая из капилляров пальца, больше имеет отношение к газообмену между кровью и тканями, поэтому уровень определенных веществ в ней может быть ниже стандартного, а следовательно, не даст точных результатов при обследовании больного. Нарушения углеводного обмена.
У обоих больных будет наблюдаться гипогликемия. У первого больного это будет связано с невозможностью расщепления альфа-1,4 о гликозидной связи в цепочке гликогена. У второго больного глюкоза не сможет после гликогенолиза выходить в кровь, поскольку , имея форму глюкозо-6-фосфата, окажется "запертой" в клетке. Форма гликогеноза первого больного тяжелее, поскольку гликоген, в отличие от глюкозо 6 фосфата, не может быть использован организмом в других целях (в окислении в ПФЦ, например, или в работе мышц), а его накопление приведет лишь к увеличению печени. Но в обоих случаях будет наблюдаться гипогликемия, накопление гликогена в печени, почках и мышцах, а также лактоацидоз. Болезнь гирке тяжелее, т.к. печень снабжает весь организм энергией.
Галактокиназа способствует фосфорилированию галактозы в галактозо-1-фосфат с использованием АТФ. Следовательно, при недостатке данного фермента свободная галактоза будет накапливаться в ткани. А галактозо-1-фосфатуридилтрансфераза способствует "обмену" монозами между галактозо-1-фосфатом и УДФ глюкозой, что приводит к образованию глюкозо-1-фосфата, используемого уже в синтезе гликогена. Галактоземия , обусловленная недостаточностью фермента второго типа, тяжелее, так как она приводит к тяжелым поражениям печени вследствие накопления в ней галактозо-1-фосфата.
. При сахарном диабете потребность организма в кислороде увеличится, поскольку вследствие накопления глюкозы в крови она не сможет должным образом преобразовываться до пирувата в тканях, а следовательно - не будет служить источником протонов водорода, "посылаемых" кислороду для образования энергии (раз нет протонов, то и кислород поступать в ткани не будет). При данной патологии в крови будут накапливаться кетоновые тела, поскольку при недостатке инсулина будет активироваться распад жиров, которые будут окисляться в печени до ацетил-Ко-А, а он, в свою очередь даст начало β-гидроксимасляной и ацетоуксусной кислотам. Последняя же будет частично декарбоксилироваться до ацетона. вследствие этого у больного будет наблюдаться кетоацидоз, а значит рН крови будет ниже нормы (ниже 7,35 - 7,4).
Основными биохимическими симптомами сахарного диабета являются гипергликемия, глюкозурия, кетонимия и некоторые другие. Основную роль в регуляции углеводного обмена организма играет гормон поджелудочной железы — инсулин. Он представляет собой белок, синтезируемый в β-клетках островков Лангерганса (скопление эндокринных клеток в ткани поджелудочной железы) и призван стимулировать переработку глюкозы клетками. Почти все ткани и органы (например, печень, мышцы, жировая ткань) способны перерабатывать глюкозу только в его присутствии. Эти ткани и органы называются инсулинзависимыми. Другие ткани и органы, например мозг, не нуждаются в инсулине для того, чтобы перерабатывать глюкозу, и потому называются инсулиннезависимыми.Непереработанная глюкоза депонируется (запасается) в печени и мышцах в виде полисахарида гликогена, который в дальнейшем может быть снова превращён в глюкозу. Но для того, чтобы превратить глюкозу в гликоген, тоже нужен инсулин. В норме содержание глюкозы в крови колеблется в достаточно узких пределах: от 70 до 110 мг/дл (миллиграмм на децилитр) (3,3—5,5 ммоль/л) утром после сна и от 120 до 140 мг/дл после еды. Это происходит благодаря тому, что поджелудочная железа производит тем больше инсулина, чем выше уровень глюкозы в крови. При недостаточности инсулина (сахарный диабет 1-го типа) или нарушении механизма взаимодействия инсулина с клетками организма (сахарный диабет 2-го типа) глюкоза накапливается в крови в больших количествах (гипергликемия), а клетки организма (за исключением инсулиннезависимых органов) лишаются основного источника энергии. Гипергликемия (от др.-греч. υπερ — сверху, над; γλυκύς — сладкий; αἷμα — кровь)[14] — клинический симптом, обозначающий увеличение содержания глюкозы в сыворотке крови по сравнению с нормой в 3,3—5,5 ммоль/лГликозурия, или глюкозурия — наличие глюкозы в моче. В норме моча не содержит глюкозы, поскольку почки способны реабсорбировать (возвращать в кровоток) весь объём глюкозы, прошедший через почечный клубочек в просвет канальцев нефрона. В подавляющем большинстве случаев гликозурия является сипмтомом декомпенсированного сахарного диабета как результат патологического увеличения концентрации глюкозы в крови. Редким исключением является нарушение реабсорбции в самой почке, — т. н. ренальная (почечная) гликозурия. Гликозурия ведёт к избыточной потере воды с мочой — дегидратации организма, развивающейся из-за усиления осмотического компонента диуреза. Регуляция содержания глюкозы в крови при предельном голодании | При голодании в течение первых суток исчерпываются запасы гликогена в организме, и в дальнейшем источником глюкозы служит только глюконеогенез (из лактата, глицерина и аминокислот). Глюконеогенез при этом ускоряется, а гликолиз замедляется вследствие низкой концентрации инсулина и высокой концентрации глюкагона. Но, кроме того, через 1-2 сут существенно проявляется действие и другого механизма регуляции — индукции и репрессии синтеза некоторых ферментов: снижается количество гликолитических ферментов и, наоборот, повышается количество ферментов глюконеогенеза. Изменение синтеза ферментов также связано с влиянием инсулина и глюкагона. Начиная со второго дня голодания достигается максимальная скорость глюконеогенеза из аминокислот и глицерина. Скорость глюконеогенеза из лактата остаётся постоянной. В результате синтезируется около 100 г глюкозы ежесуточно, главным образом в печени. Следует отметить, что при голодании глюкоза не используется мышечными и жировыми клетками, поскольку в отсутствие инсулина не проникает в них и таким образом сберегается для снабжения мозга и других глюкозозависимых клеток; обеспечение энергетических потребностей мышц и других тканей происходит за счёт жирных кислот и кетоновых тел. Поскольку при других условиях мышцы — один из основных потребителей глюкозы, то прекращение потребления глюкозы мышцами при голодании имеет существенное значение для обеспечения глюкозой мозга. При достаточно продолжительном голодании (несколько дней и больше) мозг начинает использовать и другие источники энергии (например жиры). Вариантом голодания является несбалансированное питание, в частности такое, когда по калорийности рацион содержит мало углеводов — углеводное голодание. В этом случае также активируется глюконеогенез, и для синтеза глюкозы используются аминокислоты и глицерол, образующиеся из пищевых белков и жиров.
Данные коферменты участвуют в утилизации из крови пирувата, а именно - в его окислительном декарбоксилировании ( В1 идет на синтез тиаминпирофосфата, который присоединяет к себе ацетильный остаток пирувата после его декарбоксилирования, передавая его позже липоевой кислоте; В2 - источник ФАД, который временно принимает на себя ионы водорода после дегидрирования липоевой кислоты; РР идет на синтез НАД, которые окочательно принимают на себя водород, используемый уже в процессах тканевого дыхания на синтез АТФ). Декарбоксилирование пирувата необходимо, потому что во-первых, он может окислиться до молочной кислоты и привести к ацидозу, а во-вторых, он сам является токсичным веществом, тормозящим деятельность нервной системы и способным привести к судорогам и прочим недомоганиям. А в ходе данной реакции он не только утилизируется, но и образует ацетил-Ко-А, используемый в ЦТК. 40(1). Хром, взаимодействуя с инсулином, способствует усвоению глюкозы в крови и проникновению ее в клетки. Дефицит хрома усугубляет инсулинорезистентность – один из основных механизмов развития сахарного диабета типа 2, тогда как дополнительный прием хрома вызывает уменьшение уровня глюкозы в крови и инсулинорезистентности. Пуровень глюкозы в крови усиливает выведение хрома из организма, приводя к снижению его уровня у пациентов, страдающих сахарным диабетом. Цинк стимулирует синтез инсулина, входит в состав кристаллов инсулина, локализующихся в секреторных гранулах клеток островков поджелудочной железы. Магний при сахарном диабете 2-го типа улучшает работу инсулина в усвоении сахара. Поддерживает секрецию инсулина из поджелудочной железы, снижая риск заболевания диабетом или его дальнейшего осложнения. Витамин В1 (тиамин) играет ключевую роль в обеспечении нормального протекания энергетического метаболизма и сгорания в организме углеводов. При нарушениях углеводного обмена, наблюдаемых при сахарном диабете, потребность в этом витамине возрастает, и создаются условия для развития его дефицита. У больных сахарным диабетом типа 2 липофильный тиаминдифосфат предупреждает развитие эндотелиальной макро- и микрососудистой дисфункции и окислительного стресса после приема пищи. Витамин B2 рибофлавин – водорастворимый витамин. Работает как кофермент в окислительно-восстановительных реакциях метаболизма углеводов. Витамин РР (В3,никотиновая кислота) снижает уровень триглицеридов, способных провоцировать возникновение сахарного диабета. Панкреатическая липаза расщепляет эфирные связи в триглицеридах.Высокий уровень триглицеридов вызывает панкреатит-воспаление поджелудочной железы из-за многократного повышения активности липазы. Липоевая кислота увеличивает эффективность утилизации глюкозы клетками (путем влияния на белок-транспортер глюкозы (GluT), ингибирует деградацию инсулина.
Диэтиловый эфир при диабете неприемлем, поскольку он стимулирует выделение катехоламинов, предрасполагающих к гипергликемии.Помимо изменения секреции инсулина, катехоламины повышают уровень сахара в крови еще по меньшей мере с помощью четырех механизмов: 1.стимулируя гликогенолиз и глюконеогенеза; 2.тормозя опосредованное инсулином поглощение глюкозы; 3.повышая липолиз; 4.стимулируя секрецию глюкагона.
Происходит неферментативное гликозилирование гемоглобина. Макрофаги воспринимают его как чужеродное соединение и фагоцитируют.
Хроническая гипергликемия чаще всего бывает в случае сахарного диабета, и фактически является основной характеристикой этого заболевания.При диабете нарушается окисление пировиноградной кислоты. Пировиноградная кислота накапливается в избытке и частично переходит в молочную кислоту, содержание которой также возрастает. Накопление в крови лактата при сахарном диабете происходит при недостаточной его утилизации. Аланин — важнейший субстрат глюконеогенеза. Скорость образования аланина увеличивается отчасти за счет ускоренного трансаминирования пирувата. Следует назначить следующие витамины: В1-входит в состав кофермента, участвующего в процессе окисления пировиноградной кислоты. В12-Витамин А (ретинол). При сахарном диабете особенно важной является его антиоксидантная активность, которая приостанавливает повреждение клеток и предупреждает осложнения.Витамин В6 (пиридоксин). Оказывает положительное действие при диабетических поражениях нервной системы. Его недостаток усугубляет резистентность тканей к инсулину.Никотиновая кислота (витамин В3, PP, ниацин). Играет ощутимую роль в механизмах толерантности организма к глюкозе. Может способствовать снижению доз инсулина у пациентов с сахарным диабетом второго типа.
Ингибиторы альфа-гликозидазы (акарбоза, миглитол) угнетают ферменты, ращепляющие сложные углеводы (крахмал), тем самым уменьшают всасывание глюкозы в кишечнике. Сахара, первоначально расщепляются в кишечнике до простых сахаров при помощи ферментов. Акарбоза выполняет роль «пищевой ловушки», конкурентно и обратимо связываясь с ферментом тонкой кишки (альфа-глюкозидаза), участвующим в переваривании углеводов. А поскольку фермент оказывается занятым акарбозой, то поступающие с пищей поли- и олигосахариды не расщепляются и не всасываются. Миглитол конкурентно ингибирует альфа-глюкозидазы (сахараза, гликоамилаза, мальтаза, декстраза, панкреатическая амилаза), локализованные на щеточной кайме эпителия тонкой кишки и участвующие в конечной стадии переваривания углеводов. Замедляет расщепление ди-, олиго- и полисахаридов до глюкозы и угнетает ее абсорбцию.Следовательно,ингибиторы альфа-гликозидазы препятствуют возникновению гипергликемии.
Сахарный диабет. Жажда.Увеличивается содержание сахара в крови и почки не могут его фильтровать. На них усиливается нагрузка, и почки пытаются из крови получить дополнительную жидкость, необходимую для растворения накопившегося сахара.Это приводит к постоянному наполнению мочевого пузыря и наступает обезвоживание организма и чувствуется потребность выпивать больше жидкости, чтобы восстановить нарушенный водный баланс. Слабости и утомляемость.Сахар,содержащийся в еде, поступает в кровь, где инсулин должен помочь его усвоению клетками организма, которые используют сахар для выработки жизненной энергии. При отсутствии инсулина или нарушении реакции клеток на инсулин, сахар остается в крови и не поступает в клетки. Клетки испытывают недостаток в энергии и чувствуется постоянная усталость и недомогание.
Норма Данные Крови- 3,33 - 5,55ммоль/л 14 ммоль/л Мочи-0,3 - 0,5 г/л 40 г/л ацетоацетат крови-1,3 мг/дл 10 мг/дл ацетоацетат мочи- почти нет 20г/л При введении суточной дозы инсулина будет отмечено снижение данных показателей. Недостаток инсулина снижает утилизацию глюкозы и, наряду с избытком глюкагона, обусловливает усиленное образование глюкозы в печени за счёт стимуляции глюконеогенеза, гликогенолиза и ингибирования гликолиза. Повышенное образование в печени ацетоацетата превышает способность организма к его метаболизированию.При введении инсулина утилизация глюкозы повысится и образование ацетоацетата в печени понизится.
Инсулиновая терапия проводилась 2 месяца, а срок жизни эритроцитов 4 месяца,именно поэтому гликозилированный гемоглобин и был выше нормы,т.к. еще не разрушился. Примеры белков-Гликозилированные белки- гемоглобин , альбумин , коллаген , белки хрусталика , липопротеиы .Высокая концентрация гликированного гемоглобина отражает риск развития патологии сердечнососудистой системы, а также гликированный гемоглобин хуже связывает кислород.
Уровень глюкозы при длительной терапии снизился из-за того,что гликлазид стимулирует секрецию инсулина бета-клетками поджелудочной железы. Повышает чувствительность периферических тканей к инсулину.
Диета №9.Цель данной диеты состоит в ограничении употребления в пищу энергетически насыщенных продуктов, в основном за счет легкоусвояемых углеводсодержащих продуктов, но без снижения употребления белковых и жирсодержащих продуктов. Ограничение также касается и употребления холестерина. Полностью исключаются из рациона сладкое и сдобное. Данные ограничения служат еще и информативной цели: узнать реакцию организма на определенную дозировку углеводов.
При отсутствии инсулина или нарушении реакции клеток на инсулин, сахар остается в крови и не поступает в клетки. Клетки испытывают недостаток в энергии ,поэтому значительная физическая нагрузка исключена.Последствия-мышечная слабость,т.к. мышцам не хватает энергии,а так же нарушение их сократимости.
При опухоли бета-клеток островков Лангерганса происходит усиленное выделение инсулина,из-за этого происходит сверхутилизация глюкозы.
Метаболизм этанола в печени катализируется алкогольдегидрогеназой. Кофактором этого фермента служит НАД — вещество, необходимое для глюконеогенеза. Прием этанола приводит к быстрому расходованию НАД и резкому торможению глюконеогенеза в печени. Алкогольная гипогликемия возникает при истощении запасов гликогена,когда для поддержания нормогликемии особенно необходим глюконеогенез. Алкоголь, своим воздействием, активно атрофирует поджелудочную железу, вследствие чего понижается ее работоспособность.Недостаток инсулина ингибирует пируватдегидрогеназу, катализирующую распад пировиноградной кислоты до конечных продуктов, сопровождающийся усиленным превращением пирувата в лактат.
Алкоголь в печени превращается в ацетальдегид. Раствор сукцината ускоряет процесс превращения ацетальдегида в уксусную кислоту. При алкогольной детоксикации нарушается выработка трех ферментов цикла трикарбоновых кислот (синтетазы цитрата, изоцитратдегидрогеназы и комплекса оксоглутаратдегидрогеназы) вплоть до их полной блокировки.Начинает накапливаться пируват (конечный продукт гликолиза) и избыток NADH заставляет лактатдегидрогеназу синтезировать лактат из пирувата, чтобы восполнить NAD+ и поддержать жизнь. Таким образом, пируват изымается из других процессов, таких как глюконеогенез, что лишает печень возможности компенсировать падение уровня глюкозы и из-за этого и вводят раствор глюкозы.
Лактат повышен т .к. При алкогольной детоксикации нарушается выработка трех ферментов цикла трикарбоновых кислот (синтетазы цитрата, изоцитратдегидрогеназы и комплекса оксоглутаратдегидрогеназы) вплоть до их полной блокировки.Начинает накапливаться пируват (конечный продукт гликолиза) и избыток NADH заставляет лактатдегидрогеназу синтезировать лактат из пирувата, чтобы восполнить NAD+ и поддержать жизнь.Алкоголь подавляет глюконеогенез печени из-за того,что пируват изымается из из данного процесса и развивается гипогликемия,поэтому вводят раствор глюкозы.
|