бх. Глюконеогенез. Сахар крови и его регуляция
Скачать 4.04 Mb.
|
ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЗАНЯТИЮ ПО ТЕМЕ: Глюконеогенез. Сахар крови и его регуляция. 1. Охарактеризуйте процесс синтеза глюкозы (глюконеогенез): Что такое глюконеогенез? Объясните, когда, зачем и в каких органах преимущественно происходит синтез глюкозы Глюконеогенез — процесс образования в печени и отчасти в корковом веществе почек (около 10 %) молекул глюкозы из молекул других органических соединений — источников энергии, например свободных аминокислот, молочной кислоты, глицерина. Свободные жирные кислоты у млекопитающих для глюконеогенеза не используются При голодании в организме человека активно используются запасы питательных веществ (гликоген, жирные кислоты). Они расщепляются до аминокислот, кетокислот и других неуглеводных соединений. Большая часть этих соединений не выводится из организма, а подвергаются реутилизации. Вещества транспортируются кровью в печень из других тканей, и используются в глюконеогенезе для синтеза глюкозы — основного источника энергии в организме. Таким образом, при истощении запасов организма, глюконеогенез является основным поставщиком энергетических субстратов. Глюконеогенез протекает в основном в печени, но менее интенсивно он протекает также в корковом веществе почек и слизистой кишечника. Охарактеризуйте ход реакций глюконеогенеза из аминокислот, лактата, глицерина, называя субстрат, фермент, тип реакции, продукт. Глюкозолактатный цикл (цикл Кори). Синтез глюкозы из молочной кислотыПри физической нагрузке в мышцах продуцируется большое количество молочной кислоты, особенно если нагрузка интенсивная, максимальной мощности.Также молочная кислота непрерывно образуется эритроцитами, независимо от состояния организма. С током крови она поступает в гепатоцит и здесь превращается в пируват. Далее реакции идут по классической схеме. Суммарная реакция глюконеогенеза из молочной кислоты: Лактат + 4АТФ + 2ГТФ + 2H2O → Глюкоза + 4АДФ + 2ГДФ + 6Фн Синтез глюкозы из аминокислотРяд аминокислот являются глюкогенными, то есть их углеродные скелеты в той или иной степени способны включаться в состав глюкозы. Такими является большинство аминокислот, кроме лейцина и лизина, атомы углерода которых никогда не участвуют в синтезе углеводов. В качестве примера синтеза глюкозы из аминокислот рассмотрим участие в этом процессе глутамата, аспартата, серина и аланина. Аспарагиновая кислота (после реакции трансаминирования) и глутаминовая кислота (после дезаминирования) превращаются в метаболиты ЦТК, соответственно, в оксалоацетат и α-кетоглутарат. Аланин, трансаминируясь, образует пировиноградную кислоту, которая способна карбоксилироваться до оксалоацетата. Оксалоацетат, являясь первым элементом в процессе глюконеогенеза, далее включается в синтез глюкозы. Серин в трехступенчатой реакции под воздействием сериндегидратазы теряет аминогруппу и превращается в пируват, который вступает в глюконеогенез. Включение аминокислот в синтез глюкозыСинтез глюкозы из глицеринаПри физической нагрузке под влиянием адреналина или при голодании под влиянием глюкагона и кортизола в адипоцитах активно происходит распад триацилглицеролов (липолиз). Одним из продуктов этого процесса является спирт глицерин, который поступает в печень. Здесь он фосфорилируется, окисляется до диоксиацетонфосфата и вовлекается в реакции глюконеогенеза. Включение глицерина в синтез глюкозыЛактат - продукт анаэробного гликолиза. Он образуется при любых состояниях организма в эритроцитах и работающих мышцах. Таким образом, лактат используется в глюконеогенезе постоянно. Глицерол высвобождается при гидролизе жиров в жировой ткани в период голодания или при длительной физической нагрузке. Аминокислоты образуются в результате распада мышечных белков и включаются в глюконеогенез при длительном голодании или продолжительной мышечной работе. Образование глюкозы из лактата. Лактат, образовавшийся в интенсивно работающих мышцах или в клетках с преобладающим анаэробным способом катаболизма глюкозы, поступает в кровь, а затем в печень. В печени отношение NADH/NAD+ ниже, чем в сокращающейся мышце, поэтому лактатдегидрогеназная реакция протекает в обратном направлении, т.е. в сторону образования пирувата из лактата. Далее пируват включается в глюконеогенез, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами. Эту последовательность событий называют "глюкозо-лактатным циклом", или "циклом Кори". Цикл Кори выполняет 2 важнейшие функции: 1 - обеспечивает утилизацию лактата; 2 - предотвращает накопление лактата и, как следствие этого, опасное снижение рН (лактоацидоз). Часть пирувата, образованного из лактата, окисляется печенью до СО2 и Н2О. Энергия окисления может использоваться для синтеза АТФ, необходимого для реакций глюконеогенеза. Глюкозо-лактатный цикл (цикл Кори)Глюкозо-лактатный цикл – это циклический процесс, объединяющий реакции глюконеогенеза и реакции анаэробного гликолиза. Глюконеогенез происходит в печени, субстратом для синтеза глюкозы является лактат, поступающий в основном из эритроцитов или мышечной ткани. В эритроцитах молочная кислота образуется непрерывно, так как для них анаэробный гликолиз является единственным способом образования энергии. В скелетных мышцах высокое накопление молочной кислоты (лактата) является следствием гликолиза при очень интенсивной, субмаксимальной мощности, работе, при этом внутриклеточный рН снижается до 6,3-6,5. Но даже при работе низкой и средней интенсивности в скелетной мышце всегда образуется некоторое количество лактата. Убрать молочную кислоту можно только одним способом – превратить ее в пировиноградную кислоту. Однако сама мышечная клетка ни при работе, ни во время отдыха не способна превратить лактат в пируват из-за особенностей изофермента лактатдегидрогеназы-5. Зато клеточная мембрана высоко проницаема для лактата, он движется по градиенту концентрации наружу.и переносится кроаью в печень. Поэтому во время и после нагрузки (при восстановлении) лактат легко удаляется из мышцы. Это происходит довольно быстро, всего через 0,5-1,5 часа в мышце лактата уже нет. Малая часть молочной кислоты выводится с мочой. Большая часть лактата крови захватывается гепатоцитами, окисляется в пировиноградную кислоту и вступает на путь глюконеогенеза. Глюкоза, образованная в печени, используется самим гепатоцитом или возвращается обратно в мышцы, восстанавливая во время отдыха запасы гликогена. Также она может распределиться по другим органам. Глюкозо-лактатный (выделен желтым) и глюкозо-аланиновый циклыЛактат – конечный продукт анаэробного окисления глюкозы в мышцах, особенно в белых мышечных волокнах, где митохондрий меньше, чем в красных. Может включаться в глюконеогенез после окисления до пирувата в лактатдегидрогеназной реакции. При продолжительной физической работе основным источником лактата является скелетная мускулатура, в клетках которой преобладают анаэробные процессы. Накопление молочной кислоты в мышцах ограничивает их работоспособность. Это связано с тем, что при повышении концентрации молочной кислоты в ткани снижается уровень рН (молочнокислый ацидоз). Изменение рН приводит к ингибированию ферментов важнейших метаболических путей. В утилизации образующейся молочной кислоты важное место принадлежитглюкозо-лактатному циклу Кори. Цикл Кори и глюкозо-аланиновый цикл (пояснения в тексте). Лактат, образовавшийся в мышцах, переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая с током крови может возвращаться в работающую мышцу. В печени часть лактата может окисляться до углекислого газа и воды, превращаться в пируват и вовлекаться в общий путь катаболизма. Значение цикла Кори: 1. Регуляция постоянного уровня глюкозы в крови. 2. Обеспечивает утилизацию лактата. 3. Предотвращает накопление лактата (снижение рН - лактоацидоз). Глюкозо-лактатный цикл (цикл Кори) – это связь глюконеогенеза в печени и образования лактата эритроцитах или мышцах из глюкозы. В эритроцитах молочная кислота образуется непрерывно, так как для них анаэробный гликолиз является единственным способом образования энергии. В скелетных мышцах накопление лактата является следствием гликолиза при очень интенсивной, максимальной мощности, работе, и чем более такая работа интенсивна, тем менее продолжительна После нагрузки (во время восстановления) лактат удаляется из мышцы довольно быстро – всего за 0,5-1,5 часа. Дополнение Следует отметить, что если продолжительность нагрузки мала (до 10 секунд), то количество АТФ пополняется преимущественно в креатинфосфокиназной реакции. В таком режиме к примеру работают мышцы у штангистов, прыгунов как в длину, так и в высоту, метателей молота, копья и т.п.. Если нагрузка не более 90 секунд – АТФ синтезируется в основном в реакциях анаэробного гликолиза. В спорте это бегуны-спринтеры на 100-500 м, спортсмены силовых видов (борцы, тяжелоатлеты, бодибилдеры). Если напряжение мышцы длится более двух минут – развивается аэробное окисление глюкозы в реакциях ЦТК и дыхательной цепи. Но, хотя мы и говорим об аэробном окислении глюкозы, необходимо знать и помнить, что лактат образуется в мышце всегда: и при анаэробной, и при аэробной работе, однако в разных количествах. Образовавшийся лактат может утилизоваться только одним способом – превратиться в пировиноградную кислоту. Но, как уже указывалось, пируват токсичен для клеток и должен быть как можно быстрее утилизован. Сама мышца ни при работе, ни во время отдыха не занимается превращением лактата в пируват из-за наличия специфического изофермента ЛДГ-5. Если молочная кислота поступила в миокардиоциты, она быстро превращается в пируват, далее в ацетил-S-КоА и вовлекается в полное окисление до СОB2B и НB2BО. Большая часть лактата захватывается гепатоцитами, окисляется в пировиноградную кислоту и вступает на путь глюконеогенеза. Назовите реакции глюконеогенеза, которые протекают с затратами АТФ и рассчитайте количество молекул АТФ, которые необходимо затратить для синтеза 1 молекулы глюкозы из пирувата |