Общая микробиологияМ. Общая микробиология
Скачать 0.67 Mb.
|
Раздел 4.Генетика микроорганизмов.Строение бактериального генома. Бактериальный геном состоит из генетических элементов – репликонов. Реплеконы – бактериальная хромосома и плазмиды. Бактериальная хромосома представлена одной двуцепочечной молекулой ДНК кольцевой формы. Она кодирует жизненно важные для бактериальной клетки функции. Ее длина составляет от 3х108 до 2,5х109 нуклеотидных пар. Плазмиды – дополнительный внехромосомный генетический материал. Это двуцепочечные молекулы ДНК, длиной от 103 до 106 нуклеотидных пар, гены которой кодируют дополнительные свойства, но придающие бактерии преимущества при попадании в неблагоприятные условия существования (устойчивость к антибиотикам, продукция факторов патогенности, образование колицинов и др.). В зависимости от свойств признаков, которые кодируют плазмиды, различают: 1. F - плазмиды кодируют пол у бактерий. Мужские клетки содержат (F+) содержат F- плазмиду, женские (F-) – не содержат. Они отличаются поверхностным электрическим зарядом и поэтому притягиваются; 2. R- плазмиды (resistance) - устойчивость к лекарственным препаратам. 3. Col - плазмиды- синтез колицинов (бактериоцинов)- факторов конкуренции близкородственных бактерий (антогонизм). На этом свойстве основано колицинотипирование штаммов. 4. Hly- плазмиды- синтез гемолизинов. 5. Ent- плазмиды- синтез энтеротоксинов. 6. Tox- плазмиды- токсинообразование. Репликация плазмид происходит независимо от хромосомы, но некоторые плазмиды находятся под строгим контролем. Плазмиды, которые обратимо встраиваются в бактериальную хромосому и функционируют с ней в виде единого репликона, называются интегративными плазмидами (эписомы). Плазмиды, способные передаваться из одной бактериальной клетки в другую называются трансмиссивными плазмидами (конъюгативными). Трансмиссивность присуща лишь крупным плазмидам, имеющим tra – оперон, в который объединены гены, ответственные за перенос плазмиды. Мелкие плазмиды не несущие tra – оперон не могут передаваться сами по себе, но способны к передаче в присутствии трансмиссивных плазмид, используя их аппарат конъюгации. Такие плазмиды называются мобилизуемыми, а сам процесс мобилизацией нетрансмиссивной плазмиды. Биологическая роль плазмид многообразна, в том числе: - контроль генетического обмена бактерий; - контроль синтеза факторов патогенности; - совершенствование защиты бактерий. Плазмиды используют в практической деятельности человека в генной инженерии при конструировании специальных рекомбинативных бактериальных штаммов. Потеря клеткой плазмиды не приводит к ее гибели. В одной и той же клетке могут находиться разные плазмиды. В состав бактериального генома, как в бактериальную хромосому, так и в плазмиды входят подвижные генетические элементы. К подвижным генетическим элементам относятся вставочные последовательности и транспозоны. Вставочные (инсерционные) IS-последовательности – это короткие фрагменты ДНК, способные как целое перемещаться из одного участка репликона в другой, а также между репликонами. Они не несут структурных (кодирующих белок) генов, а содержат только гены, ответственные за транспозицию (способность перемещаться по хромосоме и встраиваться в различные ее участки). Отличительной особенностью IS-последовательности является наличие на концах вставочной последовательности ( инвертированных повторов). Эти инвертированные повторы узнает фермент транспозаза. Транспозоны – это более крупные молекулы ДНК. Помимо генов, ответственных за транспозицию, они содержат и структурный ген. Транспозоны способны перемещаться по хромосоме. Их положение сказывается на экспрессии генов. Транспозоны могут существовать и вне хромосомы (автономно), но неспособны к автономной репликации. Подвижные генетические элементы вызывают: - инактивацию генов тех участков ДНК, куда они встраиваются; - образование повреждений генетического материала; - слияние репликонов, т.е. встраивание плазмиды в хромосому; - распространение генов в популяции бактерий, что может привести к смене возбудителя инфекционных заболеваний – эволюционный процесс среди микробов. Понятие о генотипе и фенотипе. Фенотипическая и генотипическая изменчивость микроорганизмов. Мутации. Модификации. Рекомбинации. Генотип - вся совокупность имеющихся у организма генов. Фенотип- совокупность реализованных (т.е. внешних) генетически детерминированных признаков, т.е. индивидуальное (в определенных условиях внешней среды) проявление генотипа. При изменении условий существования фенотип бактерий изменяется при сохранении генотипа. Изменчивость у бактерий может быть ненаследуемой (модификационной) и генотипической (мутации, рекомбинации). Временные, наследственно не закрепленные изменения, возникающие как адаптивные реакции бактерий на изменения окружающей среды, называются модификациями (чаще - морфологические и биохимические модификации). После устранения причины бактерии реверсируют к исходному фенотипу. Стандартное проявление модификации - распределение однородной популяции на две или более двух типов- диссоциация. Пример- характер роста на питательных средах: S - (гладкие) колонии, R- (шероховатые) колонии, M- (мукоидные, слизистые) колонии, D - (карликовые) колонии. Диссоциация протекает обычно в направлении S R. Диссоциация сопровождается изменениями биохимических, морфологических, антигенных и вирулентных свойств возбудителей. Мутации - скачкообразные изменения наследственного признака. Могут быть спонтанные и индуцированные, генные (изменения одного гена) и хромосомные (изменения двух или более двух участков хромосомы). По локализации различают мутации:
Различают следующие мутации: - точечные – повреждение одной нуклеотидной пары; - делеции – выпадение нескольких нуклеотидных пар; - дупликации – добавление нуклеотидной пары; - транслокации – перемещение фрагментов хромосомы; - инверсии – перестановки нуклеотидных пар. По происхождению мутации могут быть:
Мутагены: - физические (УФ-лучи, гамма-радиация); - химические (аналоги пуриновых и пиримидиновых оснований, азотистая кислота); - биологические (транспозоны). Прямая мутация – мутация , приводящая к потере функции. Реверсия – восстановление исходных свойств у мутантов. Прямая реверсия – мутация восстанавливает генотип и фенотип. Супрессорная реверсия – мутация восстанавливает фенотип, но не восстанавливает генотип. Генетическая рекомбинация – это взаимодействие между двумя генами, т.е., между двумя ДНК, обладающими различными генотипами, которое приводит к образованию рекомбинантной ДНК, формированию дочернего генома, сочетающего гены обоих родителей. В процессе рекомбинации бактерии условно делятся на клетки-доноры, которые передают генетический материал и клетки-реципиенты, которые воспринимают его. В клетку-реципиент проникает не вся, а только часть хромосомы клетки-донора, что приводит к формированию неполной зиготы-мерозиготы. В мерозиготе образуется только один рекомбинант, генотип которого представлен генотипом реципиента, с включенным в него фрагментом хромосомы донора. По молекулярному механизму генетическая рекомбинация у бактерий делится на три вида: - гомологичная рекомбинация – происходит обмен между участками ДНК, обладающими высокой степенью гомологии; - сайт-специфическая рекомбинация происходит в определенных участках генома и не требует высокой степени гомологии; - незаконная (репликативная) рекомбинация – транспозиция подвижных генетических элементов по репликону или между репликонами. Рекомбинации – обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом. У бактерий существует несколько механизмов передачи генетической информации:
Трансформация – передача генетической информации в виде изолированных фрагментов ДНК при нахождении реципиентной клетки в среде, содержащей ДНК-донора. Для трансформации необходимо особое физиологическое состояние клетки-реципиента – компетентность. Фактор компетентности – белок, который вызывает повышение проницаемости клеточной стенки и цитоплазматической мембраны, поэтому фрагмент ДНК может проникать в такую клетку. Трансдукция – это передача генетической информации между бактериальными клетками с помощью умеренных трансдуцирующих фагов. Трансдуцирующие фаги могут переносить один ген или более. Трансдукция бывает: 1) специфической (переносится всегда один и тот же ген, трансдуцирующий фаг всегда располагается в одном и том же месте); 2) неспецифической (передаются разные гены, локализация трансдуцирующего фага непостоянна). Конъюгация – обмен генетической информацией при непосредственном контакте донора и реципиента. Необходимым условием для конъюгации является наличие в клетке-доноре транмиссивной плазмиды. Трансмиссивные плазмиды кодируют половые пили, образующие конъюгационную трубучку между клеткой донором и клеткой реципиентом, по которой плазмидная ДНК передается в новую клетку. Чем дольше этот контакт, тем большая часть донорской ДНК может быть передана реципиенту. Генетическая инженерия и область ее применения в биотехнологии. Достижения научно- технического прогресса способствовали развитию новых биологических технологий создания диагностических, лечебных и профилактических препаратов, решению проблем сбалансированности питания, экологических проблем. Основные принципы биотехнологии- ферментация, культивирование микроорганизмов, растительных и животных клеток, генная и клеточная инженерия. Генетическая инженерия является сердцевиной биотехнологии. Она, по существу, сводится к генетической рекомбинации, т.е. к обмену генами между двумя хромосомами. Метод рекомбинации in vitro или генетической инженерии заключается: а) в выделении или синтезе ДНК из отличающихся друг от друга организмов или клеток; б) получении гибридных молекул ДНК; в) введении рекомбинантных (гибридных) молекул в живые клетки; г) создании условий для экспрессии и секреции продуктов, кодируемых генами. Экспрессируемый ген в виде рекомбинантной ДНК (плазмида, фаг, вирусная ДНК) встраивается в бактериальную или животную клетку, которая приобретает новое свойство – продуцировать несвойственное этой клетке вещество, кодируемое экспрессируемым геном. Методом генетической инженерии созданы сотни препаратов медицинского и ветеринарного назначения, получены рекомбинантные штаммы-суперпродуценты, многие из которых нашли практическое применение. Уже применяются в медицине полученные методом генетической инженерии вакцины против гепатита В, интерлейкины, инсулин, гормоны роста, интерфероны, фактор некроза опухолей, пептиды тимуса, миелопептиды, эритропоэтин, антигены ВИЧ. Разработаны и в ближайшие годы будут использованы в практике генно-инженерные вакцины против малярии, ВИЧ-инфекции, сифилиса, клещевого энцефалита, холеры, бруцеллеза, гриппа, бешенства идр. На основе достижений генетики разработаны высокоточные методы диагностики и идентификации микроорганизмов - определение плазмидного профиля, рестрикционный анализ, ДНК- гибридизация, полимеразная цепная реакция (ПЦР), секвенирование и мн.др. Методы основаны на использовании ряда специфических ферментов - рестриктаз (ферментов, расщепляющих ДНК в специфических участках), лигаз или синтетаз (обеспечивают соединение двух молекул), в частности ДНК- лигаз (получение рекомбинантных молекул ДНК), полимераз (ДНК- зависимая ДНК- полимераза обеспечивает ПЦР- многократное реплицирование специфического участка нуклеотидной последовательности). Плазмиды (F- плазмиды) и вирусы (бактериофаги) используют в генной инженерии в качестве векторов для переноса генетического материала (генов). Метод клонирования заключается в том, что выделенный фрагмент (ген) вводится в состав плазмиды или другой самореплицирующейся системы и накапливается в размножающихся клетках. Практический вариант использования: микроорганизмы- продуценты биологически активных веществ (в том числе вакцин). Гибридомную технологию используют для получения моноклональных антител (МКА). Кроме клонирования для получения генов используют секвенирование и химический синтез. С помощью генно- инженерных методов получают вакцины, антигены, диагностикумы, гормоны, иммуномодуляторы. Одним из крупных разделов биотехнологии является производство антибиотиков и различных химиотерапевтических препаратов антибактериального действия. Раздел 5.Химиотерапевтические препараты. Антибиотики.Химиотерапевтические препараты – это лекарственные вещества, используемые для подавления жизнедеятельности и уничтожения микроорганизмов в тканях и средах больного, обладающие избирательным, этиотропным (действующим на причину) действием. По направленности действия химиотерапевтические препараты делят на: 1) противопротозойные; 2) противогрибковые; 3) противовирусные; 4) антибактериальные. По химическому строению выделяют несколько групп химиотерапевтических препаратов: 1) сульфаниламидные препараты (сульфаниламиды) – производные сульфаниловой кислоты. Они нарушают процесс получения микробами необходимых для их жизни и развития ростовых факторов – фолиевой кислоты и других веществ. К этой группе относят стрептоцид, норсульфазол, сульфаметизол, сульфометаксазол и др.; 2) производные нитрофурана. Механизм действия состоит в блокировании нескольких ферментных систем микробной клетки. К ним относят фурацилин, фурагин, фуразолидон, нитрофуразон и др.; 3) хинолоны. Нарушают различные этапы синтеза ДНК микробной клетки. К ним относят налидиксовую кислоту, циноксацин, норфлоксацин, ципрофлоксацин; 4) азолы – производные имидазола. Обладают противогрибковой активностью. Ингибируют биосинтез стероидов, что приводит к повреждению наружной клеточной мембраны грибов и повышению ее проницаемости. К ним относят клотримазол, кетоконазол, флуконазол и др.; 5) диаминопиримидины. Нарушают метаболизм микробной клетки. К ним относят триметоприм, пириметамин; 6) антибиотики – это группа соединений природного происхождения или их синтетических аналогов. Антибиотики. Принципы классификации. Способы получения. Эре антибиотикотерапии предшествовал период разработки антимикробных химиопрепаратов. Некоторые вехи: в 1891г. Д.А.Романовский сформулировал основные принципы химиотерапии инфекционных болезней, предложил хинин для лечения малярии, П.Эрлих в 1906г. предложил принцип химической вариации. Синтезированы производные мышьяка сальварсан и неосальварсан, предложен химиотерапевтический индекс. Круг химиопрепаратов постепенно расширялся. В 1932г. открыты подходы к созданию сульфаниламидных препаратов. Однако поистинне революционное значение имело открытие антибиотиков. Первыми открытыми антибиотиками были пенициллин (Флеминг) и стрептомицин (Ваксман). Антибиотики – это химиотерапевтические препараты из химических соединений биологического происхождения (природные), а также их полусинтетические производные и синтетические аналоги, которые в низких концентрациях оказывают избирательное повреждающее или губительное действие на микроорганизмы и опухоли. Существует ряд требований к антибиотикам, существенно ограничивающих их терапевтическое применение: - эффективность в низких концентрациях; - стабильность в организме и в различных условиях хранения; - низкая токсичность или ее отсутствие; - выраженный бактериостатический и (или) бактерицидный эффект; - отсутствие выраженных побочных эффектов; - отсутствие иммунодепрессивного воздействия. Принципы классификации антибиотиков. 1.По способу получения: - природные; - синтетические; - полусинтетические 2. По направленности действия: - антибактериальные; - противогрибковые; - противопротозойные; - противоопухолевые 3. По происхождению: - продуценты плесневые грибы (пенициллин, стрептомицин, тетрациклин); - продуценты бактерии (полимиксин, грамицидин); - продуценты высшие растения ( фитонциды чеснока и лука); - продуценты ткани животных и рыб (лизоцим, интерферон). 4. По механизму действия: - ингибиторы синтеза клеточной стенки ( бета-лактамы, гликопептиды). Не действуют на L- формы, покоящиеся формы бактерий; - ингибиторы синтеза белка (аминогликозиды, тетрациклины, хлорамфеникол, линкозамиды, макролиды, фузидиевая кислота); - ингибиторы синтеза нуклеиновых кислот (сульфаниламиды, триметоприм); ингибиторы репликации ДНК (хинолоны, нитроимидазолы, нитрофураны); ингибиторы РНК-полимеразы (рифамицины); - ингибиторы функции цитоплазматической мембраны (полимиксины, полиены, имидазолы). 5. По типу действия на микроорганизмы: - антибиотики с бактерицидным действием (влияющие на клеточную стенку и цитоплазматическую мембрану); - антибиотики с бактериостатическим действием (влияющие на синтез макромолекул). 6. По спектру действия: - с преимущественным действием на грамположительные микроорганизмы (линкозамиды, биосинтетические пенициллины, ванкомицин); - с преимущественным действием на грамотрицательные микроорганизмы (монобактамы, циклические полипептиды); - широкого спектра действия (аминогликозиды, левомицетин, тетрациклины, цефалоспорины). 7. По химическому строению: 1) b-лактамные антибиотики. К ним относятся: а) пенициллины, среди которых выделяют природные (аминипенициллин) и полусинтетические (оксациллин); б) цефалоспорины (цепорин, цефазолин, цефотаксим); в) монобактамы (азтреонам); г) карбапенемы (имипинем, меропинем); 2) аминогликозиды (канамицин, неомицин); 3) тетрациклины (тетрациклин, метациклин); 4) макролиды (эритромицин, азитромицин); 5) линкозамины (линкомицин, клиндамицин); 6) полиены (амфотерицин, нистатин); 7) гликопептиды (ванкомицин, тейкоплакин). 8) левомицетин (хлорамфеникол) 9) рифамицины (рифампицин) 10) полипептиды (полимиксин) Основные осложнения химиотерапии. Лекарственная устойчивость, меры борьбы. Основы рациональной антибиотикотерапии.Все осложнения химиотерапии можно разделить на две группы: осложнения со стороны макроорганизма и со стороны микроорганизма. Осложнения со стороны макроорганизма: - отрицательное воздействие на иммунную систему в виде аллергических реакций. Степень выраженности может быть различной – от легких форм до анафилактического шока. Наличие аллергии на один из препаратов группы является противопоказанием для использования и других препаратов этой группы, так как возможна перекрестная чувствительность; - токсическое действие. Аминогликозиды обладают ототоксичностью и нефротоксичностью, тетрациклины нарушают формирование костной ткани и зубов. Ципрофлоксацин может оказывать нейротоксическое действие, фторхинолоны – вызывать артропатии. Антибиотики, действующие на синтез белка и нуклеиновый обмен, всегда угнетают иммунную систему. Хлорамфеникол может подавлять синтез белков в клетках костного мозга, вызывая лимфопению. Фурагин, проникая через плаценту, может вызывать гемолитическую анемию у плода; 4) эндотоксический (терапевтический) шок. При применении химиотерапевтических средств в первые дни заболевания может происходить массовая гибель возбудителей, сопровождающаяся освобождением большого количества эндотоксина и других продуктов распада. Это может сопровождаться ухудшением состояния вплоть до токсического шока. Такие реакции чаще бывают у детей. Поэтому антибиотикотерапия должна сочетаться с дезинтоксикационными мероприятиями; 5) развитие дисбиоза. Он чаще возникает на фоне применения антибиотиков широкого спектра действия. Осложнения для микроорганизмов : - формирование атипичных форм микробов; - формирование антибиотикорезистентных и антибиотикозависимых форм микроорганизмов. Биохимические и генетические механизмы лекарственной устойчивости микроорганизмов. Существует два типа лекарственной устойчивости- естественная (природная) и приобретенная (в результате мутаций, обмена R- плазмидами др.). Естественная лекарственная устойчивость является видовым признаком, чаще связана с недоступностью антибиотика к его мишени, т.е. невозможностью осуществления его механизма действия. В природных условиях, особенно в почве, микроорганизмы находятся в конкурентной борьбе за субстраты. Антибиотики- один из селективных факторов отбора. Микроорганизмы- продуценты антибиотиков защищены от синтезируемых антибиотиков генетическими механизмами (генетически детерминированная устойчивость, кодируемая в хромосоме или обусловленная наличием R- плазмид). Микроорганизмы в условиях совместного обитания вынуждены вырабатывать устойчивость к антибиотикам. Резистентность к антибиотикам у микробов может быть связана с негенетическими факторами (низкая метаболическая активность, переход в L- форму). Основную роль в лекарственной устойчивости принадлежит R- плазмидам, способным передаваться в другие бактерии и формировать своеобразный генофонд лекарственной устойчивости микроорганизмов. Резистентность современных стафилококков к пенициллину доходит до 100%. На биохимическом уровне в формировании резистентности могут участвовать различные механизмы. 1. Разрушение молекулы антибиотика (пенициллины и другие бета- лактамные антибиотики разрушаются ферментом бета- лактамазой). 2. Модификация структуры молекулы антибиотика, приводящая к утрате биологической активности ( так действуют изоферменты). 3. Изменение структуры мишеней, чувствительных к антибиотику (белков 70S рибомос- устойчивость к тетрациклинам, стрептомицину, макролидам, гираз- к хинолонам, рнк- полимераз- к рифампицину, пенициллинсвязывающих белков- транспептидаз- к бета- лактамам). 4. Образование бактериями “обходного” пути метаболизма. 5. Формирование механизмов активного выведения антибиотика из клетки. Методы борьбы с лекарственной устойчивостью: 1) поиск и создание новых химиотерапевтических препаратов; 2) создание комбинированных препаратов, которые включают в себя химиотерапевтические средства различных групп, усиливающих действие друг друга; 3) периодическая смена антибиотиков; 4) соблюдение основных принципов рациональной химиотерапии: а) антибиотики надо назначать в соответствии с чувствительностью к ним возбудителей заболеваний; б) лечение следует начинать как можно раньше; в) химиотерапевтические препараты необходимо назначать в максимальных дозах, не давая микроорганизмам адаптироваться. Основы рациональной антибиотикотерапии: - микробиологический принцип (начинать лечение инфекции нужно как можно раньше, если возбудитель пока неизвестен, то назначают препараты широкого спектра действия в дозе, в 2-3 раза превышающей минимальную ингибирующую концентрацию, коррекцию проводят с учетом результатов бактериологического исследования на чувчтвительность к антибиотикам); - фармакологический принцип (учитывают продолжительность лечения, пути введения препарата, дозы препаратов); - клинический принцип (учитывают тяжесть инфекции, иммунный статус, пол, наличие беременности, возраст, состояние функции печени и почек, сопутствующие заболевания); - эпидемиологический принцип (выбор препарата особенно для стационарного больного должен учитывать состояние резистентности микробных штаммов, циркулирующих в данном отделении); - фармацевтический принцип (необходимо учитывать срок годности препарата, правила его хранения). Методы определения чувствительности к антибиотикам Из-за формирования антибиотикоустойчивых популяций микроорганизмов с целью эффективного лечения необходимо предварительно определять чувствительность данного антибиотика к выделенной культуре возбудителя. Основными методами определения антибиотикочувствительности бактерий in vitro является метод серийных разведений, диффузии в агар (бумажных дисков), определение способности к продукции бета- лактамазы, in vivo- на модели безмикробных животных, определение концентрации антибиотиков в крови и моче. Выбор метода зависит от цели исследования и возможностей лаборатории. Диско-диффузный метод следует рассматривать как качественный. Методы разведения – более точные количественные способы исследования. Их применяют в особо важных практических случаях и научно-исследовательской работе. Метод диффузии в агар с применением стандартных дисков, пропитанных различными антибиотиками в определенных концентрациях (зависят от терапевтической дозы и соотвествуют рекомендациям ВОЗ). Основан на использовании стандартных питательных сред, дисков и методов. Оценка результатов связана с существованием зависимости между размером зоны подавления роста исследуемых культур вокруг дисков и значениями минимальных подавляющих концентраций (МПК)соответствующих антибиотиков (чувствительностью микроорганизмов). Имеются специальные таблицы для оценки результатов, в соответствии с которыми культуры определяют как чувствительные, умеренно устойчивые и устойчивые (резистентные) к тестируемому антибиотику. Для исследования можно использовать стандартные питательные среды: отечественные среды АГВ №1, №2 и зарубежные – Мюллер-Хинтон агар. На поверхность подсушенной питательной среды в чашке Петри наносят 1мл исследуемой культуры (18-20 часовой бульонной культуры или стомиллионной суспензии из агаровой культуры., равномерно распределяют путем покачивания чашки и удаляют если необходимо избыток пипеткой. После посева чашки подсушивают при комнатной температуре 10-15 мин. Диски с антибиотиками накладывают пинцетом на равном расстоянии друг от друга и на 2 см от края чашки (на одну чашку не более 6 дисков). Чашки сразу ставят в термостат вверх дном и инкубируют при 370С в течение 18-20 ч (время инкубации зависит от вида исследуемого микроорганизма. Для учета результатов чашки помещают кверху дном на темную матовую поверхность и освещают настольной лампой под углом 450. Допускается учет в проходящем свете. С помощью линейки измеряют диаметры зон задержки роста вокруг дисков, включая диаметр дисков, с точностью до 1мм. Оценку результатов проводят по таблице. В медицинской практике обычно определяют 3 группы микроорганизмов по чувствительности к антибиотикам: чувствительные, среднечувствительные и устойчивые. «Чувствительные» микроорганизмы, когда обычно применяемые дозы антибиотика могут обеспечить лечебный эффект. «Среднечувствительные» микроорганизмы – повышенные дозы антибиотика могут обеспечить лечебный эффеки. «Устойчивые» микроорганизмы – нельзя рассчитывать на лечебный эффект. Метод серийных разведений антибиотиков позволяет более точно определить МПК, однако из-за громоздкости применяется реже. Для исследования используют мясопептонный бульон. Основные растворы антибиотиков приготавливают путем взвешивания их порошка и растворения его в стерильной дистиллированной воде, чтобы получить определенную удобную концентрацию. Разведения антибиотиков готовят путем разбавления основного раствора антибиотика бульоном. Для этого используют 11 пробирок. В первую пробирку вносят 2 мл раствора антибиотика и переносят по 1 мл раствора антибиотика из первой пробирки в каждую последующую. Затем суточную бульонную культуру разводят до 105 – 106 микробных тел в 1 мл и вносят по 1 мл во все пробирки с разведениями антибиотика. Посевы инкубируют при 370С. Отмечают первую пробирку с задержкой роста микробов. Бета- лактамазный тест (определение способности к образованию бета- лактамаз) чаще определяют методом дисков с нитроцефином - цефалоспорином, изменяющим окраску дисков при гидролизе. Положительный тест свидетельствует о резистентности бактерий ко всем бета- лактамаза- чувствительным пенициллинам. Ускоренные методы определения чувствительности. Ускоренное определение чувствительности микроорганизмов к антибиотикам осуществляется некоторыми зарубежными автоматизированными системами микробиологических исследований. В кюветах панели содержатся дегидрированные субстраты или диски с антибиотиками. Каждый антибиотик в кювете представлен в одной концентрации, соответствующей критерию принадлежности бактерий к группе «чувствительных» к антибиотику. Одновременно тестируется 20 и более антибиотиков. После внесения взвеси испытуемых бактерий посевы инкубируют при 35-370С в течение 4-5 часов. Результаты регистрируют спектрофотометрически или кондуктометрически сразу при появлении размножения бактерий в контроле без антибиотика. |