Главная страница

теор вер. ТВзачет. Общее число способов рассаживания 7 учеников


Скачать 94.5 Kb.
НазваниеОбщее число способов рассаживания 7 учеников
Анкортеор вер
Дата09.11.2019
Размер94.5 Kb.
Формат файлаdoc
Имя файлаТВзачет.doc
ТипДокументы
#94213
страница1 из 3
  1   2   3

  1. На один ряд из 7 мест, случайным образом садятся 7 учеников. Найти вероятность того, что три определенных ученика окажутся рядом

Пусть - событие, состоящее в том, что из 7 человек 3 определённых окажутся рядом. Найдём вероятность события , используя классическое определение вероятности.

- общее число способов рассаживания 7 учеников,

- число способов рассаживания 7 учеников, когда 3 определённых ученика окажутся рядом (3 ученика рассматриваются как один, тогда 1+4=5 учеников можно рассадить 5! способами, при этом внутри «тройки» ученики могут пересаживаться 3! способами; так как одни способы рассаживания нужно рассматривать в совокупности с другими, то по правилу произведения получим способов рассаживания учеников).

Значит, .

Ответ: .


  1. В магазине имеется в продаже 20 пар обуви, из которых 7 пар 42 размера. Найти вероятность того, что из 8 -ми покупателей 3 выберут обувь 42 размера.


  1. На сборку попадают детали с трех автоматов. Известно, что первый автомат дает 0,2% брака; второй - 0,3% и третий - 0,4%. Найти вероятность попадания на сборку бракованной детали, если с первого автомата поступило 500, со второго - 1000 и с третьего - 1500 деталей.



  1. Наудачу взяты два положительных числа x и y, каждое из которых не превышает двух. Найти вероятность, что их произведение будет не больше 1, а частное y/x не больше двух.



  1. Однотипные приборы выпускаются тремя заводами в количественном отношении 1:2:3, причем вероятности брака для этих заводов соответственно равны 3%; 2%; 1%. Прибор, приобретенный НИИ, оказался бракованным. Какова вероятность того, что этот прибор произведен первым заводом (марка завода на приборе отсутствовала)



  1. Наудачу взяты два положительных числа x и y, каждое из которых не превышает 1. Найти вероятность того, что их сумма не превышает 1, а произведение не меньше 0,09.


  1. В прямоугольник с вершинами K(-1,0), L(-1,5),M(2,5), N(2,0) брошена точка. Какова вероятность того,что её координаты будут удовлетворять неравенствам



  1   2   3


написать администратору сайта