ИИТ. Информационно-измерительная техника (иит). Общие сведения Информационноизмерительная техника (иит)
Скачать 6.71 Mb.
|
Рис. 8. Структурная схема автоматизированного магнитоизмерительного комплексаИнтерфейс комплекса, используя сформированные в управляющем компьютере сигналы системной шины ISA, организует цифровую часть внутренней шины комплекса, состоящую из 16-разрядной шины данных, 14 радиальных адресных линий, двух линий для передачи сигналов, управляющих чтением и записью; 14 внутренних адресов АМК выбираются из разрешенных адресов компьютера, зарезервированных для внешних устройств. С помощью сигналов, передаваемых по внутренней шине, организуется работа всех модулей комплекса. Синхронизацию работы комплекса обеспечивает программно-управляемый таймер, реализующий метод цифровой фазовой автоматической подстройки частоты. Он формирует два синхронизирующих сигнала: меандры с частотой перемагничивающего сигнала f и f/256. Последний обеспечивает дискретизацию перемагничивающего и измеряемых сигналов на N=256 точек. Таймер позволяет программно задавать частоту перемагничивающего сигнала в диапазоне от fmin= 20 Гц до fmax=5120 Гц. Погрешность установки частоты не превышает 0,05%. Для измерения параметров и характеристик испытуемый магнитный материал необходимо перемагнитить. Это осуществляется подачей испытательного сигнала – напряжения. При измерении параметров должен быть обеспечен заданный режим перемагничивания, т.е. определенный закон изменения магнитной индукции в испытуемом образце. По ГОСТ 12119–80 при измерении удельных потерь индукция в испытуемом образце должна изменяться по синусоидальному закону, причем коэффициент гармоник не должен превышать 2%. Испытательные сигналы в АМК формируются источником перемагничивающего сигнала (ИПС), состоящим из ЦАП, усилителя мощности (УМ) и аттенюатора (Атт). Формирование перемагничивающего сигнала происходит следующим образом. Компьютер по математической модели, описывающей требуемый сигнал, рассчитывает цифровой код, который представляется в виде массива из N=256 двоичных 12-разрядных чисел. Эти коды записываются в два буферных ОЗУ ЦАП (на рис. 7 не показаны). Из одного такого устройства последовательно во времени с частотой дискретизации fN коды поступают в 12-разрядный ЦАП, где преобразуются в переменное напряжение заданной частоты f и формы. Оно усиливается УМ и через аттенюатор поступает на блок первичных преобразователей (БПП). Аттенюатор предназначен для ступенчатого изменения уровня выходного сигнала в широких пределах, что дает возможность испытывать образцы магнитных материалов различных размеров. Для формирования заданного закона перемагничивания используются итерационные методы, суть которых состоит в том, чтобы рассчитать и сформировать испытательный сигнал такой формы, при перемагничивании которым магнитная индукция в образце изменялась бы по заданному закону. Процесс формирования занимает во времени несколько тактов – итераций, в течение которых закон изменения магнитной величины последовательно приближается к требуемому. Форма перемагничивающего напряжения задается программно. Блок первичных преобразователей содержит испытуемый магнитный образец МО с намагничивающей w1 и измерительной w2 обмотками и эталонный резистор R0. Ток с выхода аттенюатора, протекая по намагничивающей обмотке, перемагничивает испытуемый образец. Переменные напряжения, пропорциональные скорости изменения магнитной индукции и напряженности магнитного поля, поступают на вход измерительного канала, состоящего из коммутатора (Ком), масштабирующего усилителя (МУ) и 12-разрядного АЦП. В канале измеряемое переменное напряжение преобразуется в 256 значений цифрового кода, пропорциональных мгновенным значениям измеряемых напряжений в 256 точках дискретизации, равномерно распределенных по периоду измеряемого напряжения. Полученные массивы цифровых кодов поступают в компьютер, где путем пересчета определяются требуемые магнитные характеристики. Коммутатор реализует подключение четырех возможных входных сигналов u1…u4. Последние два сигнала u3 и u4 нужны для автоматической калибровки коэффициента передачи масштабирующего усилителя (Е0) и устранения смещения нуля в измерительном канале (нулевой потенциал). Масштабирующий усилитель осуществляет автоматический выбор одного из восьми пределов измерения. Это делается для того, чтобы его выходной сигнал лежал в диапазоне 5,12…10,24 В, наиболее подходящем для эффективной работы АЦП. Установленный коэффициент передачи усилителя используется в управляющем компьютере для пересчета выходного кода АЦП в напряжение и далее в магнитную величину. Поскольку АЦП преобразует биполярный переменный сигнал, то для учета знака используется старший, двенадцатый разряд выходного кода. В этом случае мгновенное значение j-го (j=1…4) входного напряжения коммутатора где Uоп – прецизионное постоянное напряжение, используемое в АЦП; kj, kyj – коэффициенты передачи коммутатора и масштабирующего усилителя при измерении j-го входного сигнала; Nj(ti) – мгновенное значение выходного кода АЦП при измерении j-го входного сигнала. Формулы, по которым компьютер проводит расчет мгновенных значений напряженности поля и скорости изменения магнитной индукции: Для определения мгновенных значений магнитной индукции используются известные формулы численного интегрирования. Полученные пары [H(ti); B(ti)] описывают множество точек петли гистерезиса. С их помощью можно рассчитать практически любые магнитные характеристики и параметры испытуемого образца. ПО комплекса написано на языках Паскаль и Ассемблер. Функционально оно может быть разделено на несколько взаимосвязанных частей – подсистем, обеспечивающих ввод/вывод исходной информации об объекте и режимах испытаний, проведение различных режимов испытаний, вывод измерительной информации и ее архивирование, оперативную диагностику состояния комплекса, тестирование блоков комплекса. Подсистема ввода/вывода исходной информации предназначена для настройки комплекса на измерение свойств конкретного образца при выбранном законе измерения магнитной индукции. Подсистема режимов испытаний является основной и дает возможность проводить: проверку метрологических параметров измерительного канала; установку амплитудных значений индукции и напряженности поля; магнитную подготовку испытуемого образца; измерение кривой намагничивания и кривой потерь; измерение петли гистерезиса и ее характерных точек; построение графиков ранее измеренных зависимостей, хранимых в виде файлов. При измерении всех характеристик имеется возможность выводить данные на диск, принтер, а также получать на экране монитора графики полученных зависимостей. Подсистема тестирования модулей комплекса позволяет контролировать метрологические характеристики ЦАП, АЦП и измерительного канала в целом. Для этого в состав комплекса включен программно-управляемый прецизионный калибратор, состоящий из ЦАП, усилителя (УК) и делителя (ДК) калибратора. 9. Статистические измерительные системы 9.1. Особенности измерения статистических характеристик случайных процессов Статистический анализ случайных величин и процессов широко применяется во всех отраслях науки и техники. При экспериментальном измерении характеристик случайных процессов имеется возможность оперировать с временной реализацией xi(t), ансамблем реализаций {xi(t)}i=1,2,…m при 0 t Т или ансамблем реализаций {xi(tj)}i=1,2,…m, взятых в определенный момент времени tj (рис.9). |