Охрана труда
Скачать 5.35 Mb.
|
Параметры электрического тока и источники электроопасности Основными параметрами электрического тока являются частота электрического тока f (Гц), электрическое напряжение в сети U (В), сила электрического тока I (А). С точки зрения электробезопасности важное значение имеет тип электрической сети. В настоящее время наиболее распространены следующие типы электрических сетей: четырехпроводные электрические сети с глухозаземленной нейтральной точкой (рис. 2.21). Рис. 2.21. Четырехпроводная сеть с глухозаземленной нейтралью: А, В, С — фазные провода; PEN — нейтральный рабочий провод Три провода сети являются фазными проводами, а один — нейтральный рабочий провод. Нейтральная точка сети и рабочий нейтральный провод имеют соединение с землей (заземлены). Напряжение между любыми двумя фазными проводами равно линейному напряжению л U , а между любым фазным и нейтральным проводами — фазному ф U . Линейное и фазное напряжение связаны соотношением ф U 3 л U . Например, в сети напряжением 380/220 В линейное напряжение 380 В, а фазное 220 В. Четырехпроводная сеть с заземленной нейтралью наиболее распространена как в промышленности, так и в бытовых электрических сетях; трехпроводные электрические сети с изолированной нейтралью (рис. 2.22). Рис. 2.22. Трехпроводная сеть с изолированной нейтралью: А, В, С — фазные провода; г и С — электрические сопротивления и емкости соответствующих фаз В этих сетях имеется три фазных провода, отсутствует нулевой рабочий провод, а нейтральная точка изолирована от земли. Эти сети нашли менее широкое распространение и используются в промышленности и технике для электроснабжения специальных технических устройств и технологических процессов; однофазные электрические сети. Электрический ток подразделяется на постоянный и непостоянный (переменный). Токи промышленной частоты имеют частоту 50 Гц. Однако для питания ряда технических устройств, электроинструмента применяются токи и более высоких частот, например 400 Гц. По напряжению электрический ток подразделяется на низковольтный и высоковольтный. Высоковольтным считается напряжение свыше 1000 В. Источники электрической опасности. Электрический ток широко используется в промышленности, технике, быту, на транспорте. Устройства, машины, технологическое оборудование и приборы, использующие для своей работы электрический ток могут являться источниками опасности. Поражение электрическим током может произойти при прикосновении к токоведущим частям, находящимся под напряжением, отключенным токоведущим частям, на которых остался заряд или появилось напряжение в результате случайного включения в сеть, к нетоковедущим частям, выполненным из проводящего электрический ток материала, после перехода на них напряжения с токоведущих частей. Кроме того, возможно поражение человека электрическим током под воздействием напряжения шага при нахождении человека в зоне растекания тока на землю; электрической дугой, возникающей при коротких замыканиях; при приближении человека к частям высоковольтных установок, находящимся под напряжением, на недопустимо малое расстояние. Человек может оказаться под воздействием напряжения прикосновения и напряжения шага. Растекание тока в грунте (основании) возникает при замыкании находящихся под напряжением частей электрических установок и проводов на землю. Замыкание может произойти при повреждении изоляции и пробое фазы на корпус электроустановки, при обрыве и падении провода под напряжением на землю и по другим причинам. При растекании тока в грунте (основании) на поверхности земли (основания) формируется поле электрических потенциалов φ. Чем дальше от точки замыкания тока на землю, тем меньше электрический потенциал. Электрический потенциал в зоне растекания тока распределяется по гиперболическому закону (рис. 2.23): , x k х где k — постоянная величина, определяемая в зависимости от электрического сопротивления грунта и величины стекающего тока замыкания; х — расстояние от точки замыкания до земли. Рисунок 2.23 Растекание тока в основании Зона растекания тока практически составляет 20 м. За пределами этой зоны величины электрических потенциалов незначительны, и их можно принимать нулевыми. Напряжение прикосновения — это разность электрических потенциалов между двумя точками тела человека, возникающая при его прикосновении к токоведущим частям, корпусу электроустановки или нетоковедущим частям, оказавшимся под напряжением. На рис. 2.24 изображена схема формирования напряжения прикосновения, возникающего между рукой человека, прикоснувшегося к корпусу электроустановки, оказавшемуся под напряжением, и его ногами. Рис. 2.24. Схема формирования напряжения прикосновения Напряжение прикосновение ( пр U ) равно разности потенциалов, под которыми находятся рука ( р φ ) и ноги ( н φ ) человека: н φ р φ пр U Потенциал руки ( р φ ) равен потенциалу корпуса, а потенциал ног ( н φ ) равен потенциалу земли, который зависит от удаленности человека от точки стекания тока в землю. Если корпус установки, оказавшейся под напряжением, изолирован от земли или человек находится на расстоянии более 20 м от точки стекания тока с корпуса в землю, то потенциал земли нулевой и напряжение прикосновения фактически равно потенциалу корпуса. Если человек находится в зоне растекания тока, то чем дальше человек находится от точки стекания тока в землю, тем меньше потенциал земли, а следовательно, больше напряжение прикосновения, под которым находится человек. Если человек стоит рядом с точкой стекания тока, потенциал земли (потенциал ног) практически равен потенциалу корпуса (потенциалу руки), и напряжение прикосновения равно нулю, т. е. человек находится в безопасности. Напряжение шага возникает, когда человек находится в зоне растекания электрического тока в основании (земле). Схема формирования напряжения шага показана на рис. 2.25. Как видно из рисунка, если ноги человека удалены на различное расстояние от точки стекания тока, которое, как правило, определяется размером шага, то они будут находиться под различными потенциалами. В результате между ногами возникает напряжение шага, равное разности потенциалов, под которыми находятся ноги. Чем дальше находится человек от точки замыкания тока на землю,тем более пологой является кривая растекания тока, и при одной и той же величине шага напряжение меньше. Рисунок 2.25 Схема формирования напряжения шага Категорирование помещений по степени электрической опасности. Помещения без повышенной опасности — это сухие, беспыльные помещения с нормальной температурой воздуха и с изолирующими (например, деревянными) полами, т. е. в которых отсутствуют условия, свойственные помещениям с повышенной опасностью и особо опасными. Примером помещений без повышенной опасности могут слжить обычные конторские помещения, инструментальныекладовые, лаборатории, а также некоторые производственные помещения, в том числе цеха приборных заводов, размещенные в сухих, беспыльных помещениях с изолирующими полами и нормальной температурой. Помещения повышенной опасности характеризуются наличием одого из следующих пяти условий, создающих повышенную опасность: сырость, когда относительная влажность воздуха длительно превышает 70 %; такие помещения называют сырыми; высокая температура, когда температура воздуха длительно (свыше суток) превышает +30 °С; такие помещения называются жаркими; токопроводящая пыль, когда по условиям производства в помещениях выделяется токопроводящая технологическая пыль (например, угольная, металлическая и т. п.) в таком количестве, что она оседает на проводах, проникает внутрь машин, аппаратов и т. п.; такие помещения называются пыльными с токопроводящей пылью; токопроводящие полы — металлические, земляные, железобетонные, кирпичные ит. п.; возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования — с другой. Примером помещения с повышенной опасностью могут служить лестничные клетки различных зданий с проводящими полами, складские неотапливаемые помещения (даже если они размещены в зданиях с изолирующими полами и деревянными стеллажами) и т. п. Помещения особо опасные характеризуются наличием одного из следующих трех условий, создающих особую опасность: особая сырость, когда относительная влажность воздуха близка к 100 % (стены, пол и предметы, находящиеся в помещении, покрыты влагой); такие помещения называются особо сырыми; химически активная или органическая среда, т. е. помещения, в которых постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образующие отложения или плесень, действующие разру- шающие на изоляцию и токоведущие части электрооборудования; такие помещения называются помещениями с химически активной или органической средой; одновременное наличие двух и более условий, свойственных помещениям с повышенной опасностью. Особо опасными помещениями является большая часть производственных помещений, в том числе все цехи машиностроительных заводов, испытательные станции, гальванические цехи, мастерские и т. п. К таким же помещениям относятся и участки работ на земле под открытым небом или под навесом. Воздействие электрического тока на человека Электрический ток оказывает на человека термическое, электролитическое, биологическое и механическое воздействие. Термическое воздействие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, что вызывает в них значительные функциональные расстройства. Электролитическое воздействие в разложении различных жидкостей организма (воды, крови, лимфы) на ионы, в результате чего происходит нарушение их физико-химического состава и свойств. Биологическое действие тока проявляется в виде раздражения и возбуждения тканей организма, судорожного сокращения мышц, а также нарушения внутренних биологических процессов. Действие электрического тока на человека приводит к травмам или гибели людей. Электрические травмы разделяются на общие (электрические удары) и местные электротравмы (рис. 2.26). Наибольшую опасность представляют электрические удары. Электрический удар — это возбуждение живых тканей прошедшим через человека электрическим током, сопровождающиеся судорожными сокращениями мышц; в зависимости от исхода воздействия тока различают четыре степени электрических ударов: I — судорожное сокращение мышц без потери сознания; II — судорожное сокращение мышц с потерей сознания, но с сохранившимися дыханием и работой сердца; III — потеря сознания и нарушение сердечной деятельности и или дыхания (или того и другого вместе); Рисунок 2.26 Классификация электрических травм IV — клиническая смерть, т. е. отсутствие дыхания и кровообращения. Кроме остановки сердца и прекращения дыхания причиной смерти может быть электрический шок — тяжелая нервно-рефлекторная реакция организма на сильное раздражение электрическим током. Шоковое состояние длится от нескольких десятков минут до суток, после чего может наступить гибель или выздоровление в результате интенсивных лечебных мероприятий. Местные электротравмы — это местные нарушения целостности тканей организма. К местным электротравмам относятся: электрический ожог — бывает токовым и дуговым; токовый ожог связан с прохождением тока через тело человека и является следствием преобразования электрической энергии в тепловую (как правило, возникает при относительно невысоких напряжениях электрической сети); при высоких напряжениях электрической сети между проводником тока и телом человека может образоваться электрическая дуга, возникает более тяжелый ожог — дуговой, т. к. электрическая дуга обладает очень большой температурой — свы- ше 3500 °С; электрические знаки — пятна серого или бледно-желтого цвета на поверхности кожи человека, образующиеся в месте контакта с проводником тока; как правило, знаки имеют круглую или овальную форму с размерами 1—5 мм; эта травма не представляет серьезной опасности и достаточно быстро проходит; металлизация кожи - проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги; в зависимости от места поражения травма может быть очень болезненной, с течением времени пораженная кожа сходит; поражение же глаз может закончиться ухудшением или даже потерей зрения; электроофтальмия — воспаление наружных оболочек глаз под действием потока ультрафиолетовых лучей, испускаемых электрической дугой; по этой причине нельзя смотреть на сварочную электродугу; травма сопровождается сильной болью и резью в глазах, временной потерей зрения, при сильном поражении лечение может быть сложным и длительным; на электрическую дугу без специальных защитных очков или масок смотреть нельзя; механические повреждения возникают в результате резких судорожных сокращений мышц под действием проходящего через человека тока, при непроизвольных мышечных сокращениях могут произойти разрывы кожи, кровеносных сосудов, а также вывихи суставов, разрывы связок и даже переломы костей; кроме того, при испуге и шоке человек может упасть с высоты и получить травму. Как видим, электрический ток очень опасен и обращение с ним требует большой осторожности и знания мер обеспечения электробезопасности. Параметры, определяющие тяжесть поражения электрическим током (рис. 2.27). Основными факторами, определяющими степень поражения электрическим током, являются: сила тока, протекающего через человека, частота тока, время воздействия и путь протекания тока через тело человека. Сила тока. Протекание через организм переменного тока промышленной частоты (50 Гц), широко используемого в промышленности и в быту, человек начинает ощущать при силе тока 0,6... 1,5 мА (мА — миллиампер равен 0,001 А). Этот ток называют пороговым ощутимым током. Большие токи вызывают у человека болезненные ощущения, которые с увеличением тока усиливаются. Например, при токе 5 мА раздражающее действие тока ощущается всей кистью, при 8... 10 мА — резкая боль охватывает всю руку и сопровождается судорожными сокращениями мышц кисти и предплечья. При 10... 15 мА судороги мышц руки становятся настолько сильными, что человек не может их преодолеть и освободиться от проводника тока. Такой ток называется пороговым неотпускающим током. При токе величиной 25...50 мА происходят нарушения в paботе легких и сердца, при длительном воздействии такого тока может произойти остановка сердца и прекращение дыхания. Рисунок 2.27 Параметры, определяющие тяжесть поражения электрическим током Начиная с величины 100 м.А протекание тока через человека вызывает фибрилляцию сердца — судорожные неритмичные сокращения сердца; сердце перестает работать как насос, перекачивающий кровь. Такой ток называется пороговым фибрилляционным током. Ток более 5 А вызывает немедленную остановку сердца, минуя состояние фибрилляции. Частота тока. Наиболее опасен ток промышленной частоты — 50 Гц. Постоянный ток и ток больших частот менее опасен, и пороговые значения для него больше. Так, для постоянного тока: пороговый ощутимый ток — 5...7 мА; пороговый неотпускающий ток — 50...80 мА; фибрилляционный ток — 300 мА. Путь протекания тока. Опасность поражения электрическим током зависит от пути протекания тока через тело человека, так как путь определяет долю общего тока, которая проходит через сердце. Наиболее опасен путь «правая рука—ноги» (как раз правой рукой чаще всего работает человек). Затем по степени снижения опасности идут: «левая рука—ноги», «рука—рука», «ноги- ноги». На рис. 2.28 изображены возможные пути протекания тока через человека. Рисунок 2.28 Характерные пути тока в теле человека: 1 — рука—рука; 2 — правая рука—ноги; 3 — левая рука—ноги; 4 — правая рука—правая нога; 5 — правая рука—левая нога; 6 — левая рука—левая нога; 7 — левая рука—правая нога; 8 — обе руки—обе ноги; 9— нога—нога; 10 — голова—руки; 11 — голова—ноги; 12 — голова—правая рука: 13 — голова—левая рука; 14 — голова—правая нога; 15 — голова—левая нога Время воздействия электрического тока. Чем продолжительнее протекает ток через человека, тем он опаснее. При протекания электрического тока через человека в месте контакта с проводником верхний слой кожи (эпидермис) быстро разрушается, электрическое сопротивление тела уменьшается, ток возрастает, и отрицательное действие электротока усугубляется. Кроме того, с течением времени растут (накапливаются) отрицательные последствия воздействия тока на организм. Определяющую роль в поражающем действии тока играет величина силы электрического тока, протекающего через организм человека. Электрический ток возникает тогда, когда создается замкнутая электрическая цепь, в которую оказывается включенным человек. По закону Ома сила электрического тока I равна электрическому напряжению U, деленному на сопротивление электрической цепи R: R U I Таким образом, чем больше напряжение, тем больше и опаснее электрический ток. Чем больше электрическое сопротивление цепи, тем меньше ток и опасность поражения человека. Электрическое сопротивление цепи равно сумме сопротивлений всех участков, составляющих цепь (проводников, пола, обуви и др.). В общее электрическое сопротивление обязательно входит и сопротивление тела человека. Электрическое сопротивление тела человека при сухой, чистой и неповрежденной коже может изменяться в довольно широких пределах — от 3 до 100 кОм (1 кОм = 1000 Ом), а иногда и выше. Основной вклад в электрическое сопротивление человека вносит наружный слой кожи — эпидермис, состоящий из ороговевших клеток. Сопротивление внутренних тканей тела небольшое — всего лишь 300...500 Ом. Поэтому при нежной, влажной и потной коже или повреждении эпидермиса (ссадины, раны) электрическое сопротивление тела может быть очень небольшим. Человек с такой кожей наиболее уязвим для электрического тока. У девушек более нежная кожа и тонкий слой эпидермиса, нежели у юношей; у мужчин, имеющих мозолистые руки, электрическое сопротивление тела может достигать очень больших величин, и опасность их поражения электротоком снижается. В расчетах на электробезопасность обычно принимают величину сопротивления тела человека, равную 1000 Ом. Электрическое сопротивление изоляции проводников тока, если она не повреждена, составляет, как правило, 100 и более килоом. Электрическое сопротивление обуви и основания (пола) зависит от материала, из которого сделано основание и подошва обуви, и их состояния — сухие или мокрые (влажные). Например, сухая подошва из кожи имеет сопротивление примерно 100 кОм, влажная подошва — 0,5 кОм; из резины соответственно 500 и 1,5 кОм. Сухой асфальтовый пол имеет сопротивление около 2000 кОм, мокрый — 0,8 кОм; бетонный соответственно 2000 и 0,1 кОм; деревянный — 30 и 0,3 кОм; земляной — 20 и 0,3 кОм; из керамической плитки — 25 и 0,3 кОм. Как видим, при влажных или мокрых основаниях и обуви значительно возрастает электроопасность. Поэтому при пользовании электричеством в сырую погоду, особенно на воде, необходимо соблюдать особую осторожность и принимать повышенные меры обеспечения электробезопасности. Для освещения, бытовых электроприборов, большого количества приборов и оборудования на производстве, как правило, используется напряжение 220 В. Существуют электросети на 380, 660 и более вольт; во многих технических устройствах применяются напряжения в десятки и сотни тысяч вольт. Такие технические устройства представляют исключительно высокую опасность. Но и значительно меньшие напряжения (220, 36 и даже 12 В) могут быть опасными в зависимости от условий и электрического сопротивления цепи R. Предельно допустимые напряжения прикосновения и токи для человека устанавливаются ГОСТ 12.1.038—82* (табл. 2.14) при аварийном режиме работы электроустановок постоянного тока частотой 50 и 400 Гц. Для переменного тока частотой 50 Гц допустимое значение напряжения прикосновения составляет 2 В, а силы тока — 0,3 мА, для тока частотой 400 Гц соответственно - 2 В и 0,4 мА; для постоянного тока — 8 В и 1 мА. Указанные данные приведены для продолжительности воздействия тока не более 10 мин в сутки. Таблица 2.14. Предельно допустимые уровни напряжения и токов Род тока Нормируема я величина Предельно допустимые уровни, не более, при продолжительности воздействия тока а I , с 0,01…0,0 8 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Св. 1,0 Переменный , 50 Гц а U , В а I , мА 650 50 0 25 0 16 5 12 5 10 0 85 70 65 55 50 3 6 6 Переменный , 400 Гц а U , В а I , мА 650 50 0 50 0 33 0 25 0 20 0 17 0 14 0 10 0 11 0 10 0 3 6 8 Постоянный а U , В а I , мА 650 50 0 40 0 35 0 30 0 25 0 24 0 23 0 22 0 21 0 20 0 4 0 1 5 Анализ схем включения человека в электрическую цепь Так как от сопротивления электрической цепи R существенно зависит величина электрического тока, проходящего через человека, то тяжесть поражения во многом определяется схемой включения человека в цепь. Схемы образующихся при контакте человека с проводником цепей зависят от вида применяемой системы электроснабжения. Наиболее распространены электрические сети, в которых нулевой провод заземлен, т. е. накоротко соединен проводником с землей. Прикосновение к нулевому проводу практически не представляет опасности для человека, опасен только фазный провод. Однако разобраться, какой из двух проводов нулевой, сложно — по виду они одинаковы. Разобраться можно используя специальный прибор — определитель фазы. На конкретных примерах рассмотрим возможные схемы включения человека в электрическую цепь при прикосновении к проводникам. Двухфазное включение в цепь. Наиболее редким, но и наиболее опасным, является прикосновение человека к двум фазным проводам или проводникам тока, соединенным с ними (рис. 2.29). Рисунок 2.29 Двухфазное включение в цепь: а — изолированная нейтраль; б — заземленная нейтраль В этом случае человек окажется под действием линейного напряжения. Через человека потечет ток по пути «рука—рука», т.е. сопротивление цепи будет включать только сопротивление тела ч R Если принять сопротивление тела в 1 кОм, а электрическую сеть напряжением 380/220 В, то сила тока, проходящего через человека, будет равна мА 380 А 38 , 0 Ом 1000 В 380 ч R л U ч I Это смертельно опасный ток. Тяжесть электротравмы или даже жизнь человека будет зависить прежде всего от того, как быстро он освободится от контакта с проводником тока (разорвет электрическую цепь), ибо время воздействия в этом случае является определяющим. Значительно чаще встречаются случаи, когда человек одной рукой соприкасается с фазным проводом или частью прибора, аппарата, который случайно или преднамеренно электрически соединен с ним. Опасность поражения электрическим током в этом случае зависит от вида электрической сети (с заземленной или изолированной нейтралью). Однофазное включение в цепь в сети с заземленной нейтралью (рис. 2.30). В этом случае ток проходит через человека по пути «рука—ноги» или «рука— рука», а человек будет находиться под фазным напряжением. Рисунок 2.30 Однофазное прикосновение в сети с заземленной нейтралью: а — нормальный режим работы; б — аварийный режим работы (повреждена вторая фаза) В первом случае сопротивление цепи будет определяться сопротивлением тела человека ( ч R ), обуви ( об R ) основания ( ос R ). на котором стоит человек, сопротивлением заземления нейтрали ( н R ), и через человека потечет ток ) н R ос R об R ч R ( ф U ч I Сопротивление нейтрали R H невелико, и им можно принебречь по сравнению с другими сопротивлениями цепи. Для оценки величины протекающего через человека тока примем напряжение сети 380/220 В. Если на человеке надета изолирующая сухая обувь (кожаная, резиновая), он стоит на сухом деревянном попу, сопротивление цепи будет большим, а сила тока по закону Ома небольшой. Например, сопротивление пола 30 кОм, кожаной обуви 100 кОм, сопротивление человека 1 кОм. Ток, проходящий через человека мА 68 , 1 А 00168 , 0 Ом ) 1000 100000 30000 ( В 220 ч I Этот ток близок к пороговому ощутимому току. Человек почувствует протекание тока, прекратит работу, устранит неисправность. Если человек стоит на влажной земле в сырой обуви или босиком, через тело будет проходить ток мА 55 А 055 , 0 Ом ) 1000 3000 ( В 220 ч I Этот ток может вызвать нарушение в работе легких и сердца, а при длительном воздействии и смерть. Если человек стоит на влажной почве в сухих и целых резиновых сапогах, через тело проходит ток мА 4 , 0 А 0004 , 0 Ом ) 1000 500000 ( В 220 ч I Воздействие такого тока человек может даже не почувствовать. Однако даже небольшая трещина или прокол на подошве сапога может резко уменьшить сопротивление резиновой подошвы и сделать работу опасной. Перед тем как приступить к работе с электрическими устройствами (особенно длительное время не находящимися в эксплуатации), их необходимо тщательно осмотреть на предмет отсутствия повреждений изоляции. Электрические устройства необходимо протереть от пыли и, если они влажные — просушить. Мокрые электрические устройства эксплуатировать нельзя! Электрический инструмент, приборы, аппаратуру лучше хранить в полиэтиленовых пакетах, чтобы исключить попадание в них пыли или влаги. Работать надо в обуви. Если надежность электрического устройства вызывает сомнения, надо подстраховаться — подложить под ноги сухой деревянный настил или резиновый коврик. Можно использовать резиновые перчатки. Второй путь протекания тока возникает тогда, когда второй рукой человек соприкасается с электропроводящими предметами, соединенными с землей (корпусом заземленного станка, металлической или железобетонной конструкцией здания, влажной деревянной стеной, водопроводной трубой, отопительной батареей и т. |