Юбельт. Определитель минералов. Определитель минералов
Скачать 1.68 Mb.
|
Рис. 10. Требуется, следовательно, измерить прикладным гониометром только углы между нормалями к соответствующим граням и взять из таблиц логарифмов значения тангенсов этих углов. В результате получаем геометрическое осевое отношение, которое после установления углов переписывается следующим образом: a: l:c=tgф(110): I :tgp(01i). У ромбического топаза были измерены угол между нормалями к (ПО) и (100), равный ф110 = 27,9°, и угол между нормалями к (011) и (001), равный poii = 43,70. Из этих данных через tg27,9°: I :tg43,7° получаем геометрические осевые отношения 0,529 : 1 : 0,955, Если на кристалле отсутствуют грани (100) или (001), то углы ф и р можно получить также делением пополам углов между двумя гранями (ПО) и (011) (рис. 11). В основе вычислений лежит предположение, что кристалл имеет грани, пересекающие две оси а и b или с и b, поскольку ось b принята за единицу. Углы между нормалями к граням (100), (010) и (001) не дают осевого отношения. Они указывают на сингонию и составляют 90° в ромбической, тетрагональной и кубической сингониях, 60° в одной плоскости гексагональной синго-нии. В триклинной сингонии во всех плоскостях и в моноклинной в одной плоскости эти углы между нормалями отличаются от 90 и 60° и являются характеристическими для каждого минерала. Они связаны с углами между осями. Вычислять их здесь не представляется возможным. Точно так же расчет осевого отношения из углов между нормалями к граням (111) или произвольными гранями (hkl] приходится оставить на долю учебников кристаллографии. Рис. 11. Иногда на кристаллах грани (НО) и (011) отсутствуют, но появляются грани (120) или (210) либо (012) или (021), которые в ряде случаев встречаются и наряду с гранями (110) и (011), так что выбор граней для измерения затрудняется и правильность индицирования может быть установлена только расчетным путем. Согласно закону рациональности отношений параметров, осевое отношение, вычисленное по данным ложного индицирования, должно допускать преобразование в правильное путем умножения или деления на малые целые числа. Поэтому мы записываем в более общей форме: Для случая вычисления отношения, исходя из граней (210) и (021) и соответствующих им углов между нормалями, это означает У топаза были измерены угол между нормалями к (100) и (210), равный ф210= 14,8°, и угол между нормалями к (001) и (021), равный p021=62,3°. Из этих данных через tg 14,8° : 1 : tg 62,3° получаем геометрические осевые отношения 0,264 : 1 : 1,905. Легко увидеть, что, удвоив значение а и взяв половину значения с, мы получим искомое осевое отношение. Поскольку на гранях кристаллов, конечно, не написаны их индексы, правильное индицирование не всегда будет легко удаваться любителям, а в некоторых случа-лх, вероятно, вообще окажется невозможным. Поэтому, если полученное осевое отношение легко сопоставляется с приведенным в данном определителе путем умножения или деления на малые целый числа, вы можете быть верейными в правильности определений. Если на об-ломках кристаллов можно измерить лишь немногие углы и нельзя определить осевое отношение полностью, то же знание только a/bили с/b дает ценные диагностические указания. Вывод вычислительных формул базируется на использовании прямоугольных треугольников, поэтому он действителен, строго говоря, лишь для прямоугольных сингоний. С некоторыми ограничениями по точности область применения формул может быть расширена. Хороший прикладной гониометр работает с точностью ± 1°. Вычисление осевого отношения, полученного с помощью этого измерительного прибора, с точностью большей, нежели до одного знака после запятой, имеет мало смысла. В пределах такой точности по приведенным формулам можно вычислять осевые отношения и большинства триклинных или моноклинных минералов. Большие неточности возникают в тех случаях, когда углы между осями резко отклоняются от 90°. Для тетрагональных минералов а — b, поэтому а : 1 : с=1 : 1 : с, и формула упрощается до c/a=tgp011 = tgp101. Вычисление применительно к гексагональной сингоний в рамках этой книги не может быть приведено. В подобных случаях следует ограничиться измерением характеристических углов 60° как отправной точки для выбора сингоний. Осевое отношение всех кубических кристаллов постоянно и равно 1:1:1. В этой сингоний полезно знать некоторые характеристические углы, располагающиеся в трех плоскостях, которые не могут встретиться в такой форме в других сингониях. Наряду с углами 90 и 45° появляются углы 60° между гранями ромбододекаэдра, 55° между гранями куба и октаэдра, 35° между гранями октаэдра и ромбододекаэдра, а также 110 или 70° между гранями октаэдра. Если в двух или даже трех взаимно перпендикулярных направлениях измерены такие углы, то кристалл однозначно является кубическим. Это, конечно, относится только к специфическим для кубической сингоний углам, т. е. не к углам 90, 45 и 60°, которые могут встретиться и в других кристаллографических системах. Современный кристаллограф, вооруженный чувствительными измерительными приборами и методикой прецизионных вычислений, способен однозначно и очень точно определить каждый кристалл и любой минерал. Цель настоящего раздела — дать первоначальное представление о проблемах, возникающих перед исследователями кристаллов. ДВОЙНИКИ В мире минералов широко распространены двойники и сростки (табл. 3). Эти агрегаты часто можно распознать по входящим углам у кристаллов. Существует ряд простых и сложных двойников. Так, у полевых шпатов карлсбадские двойники представляют собой простые двойники срастания, а манебахские двойники — это пример сложного двойникования. Другой формой двойнико-вания являются двойники прорастания, часто наблюдающиеся, например, у флюорита. Наряду с двойниками существуют также тройники и полисинтетические двойники, например у арагонита и др. Кроме того, у ставролита, у авгита из базальтов и у ряда других минералов наблюдаются крестообразные двойники. ТАБЛИЦА 3 ДВОЙНИКИ Магнетит, октаэдры, простой двойник Шпинель, октаэдры, полисинтетический двойник Ортоклаз, карлсбадский двойник Гипс, двойник Оловянный камень (касситерит), двойник Плавиковый шпат (флюорит), двойник ФОРМЫ КУБИЧЕСКОЙ СИНГОНИИ Каменная соль, куб: шестигранник Магнетит, октаэдр: восьмигранник Гранат, ромбододекаэдр: двенадцатигранник Лейцит, икоситетраэдр (тетрагон-триоктаэдр); двадцатичетырехгран-ник (лейцитоэдр) Пирамидальный куб (двадцатичеты-рехгранник) ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ Внешними признаками минералов наряду с формой их кристаллов являются их физические свойства: твердость, плотность, спайность, хрупкость, упругость, пластичность, ковкость, оптические свойства (например, окраска, цветная иризация, блеск, прозрачность, двупреломление), а также магнитные и электрические свойства и такие свойства, как вкус, запах и ощущение при прикосновении, т. е. восприятие минералов на ощупь гладкими, твердыми или шероховатыми. Все они позволяют определять минералы по их внешним признакам. НЕКОТОРЫЕ ЗАМЕЧАНИЯ ПО ПОВОДУ НАИБОЛЕЕ ХАРАКТЕРНЫХ ВНЕШНИХ ПРИЗНАКОВ ГРУППИРОВКА МИНЕРАЛОВ ПО ЦВЕТУ По цвету среди минералов различаются цветные, бесцветные и окрашенные (примесями или облучением). Металлические окраски: серебряно-белая, латунно-желтая, шпейсово-желтая (окраска колокольной бронзы), золотисто-желтая, бронзово-желтая, медно-красная, томпаково-бурая (цвет смуглой кожи), стально-се-рая и железно-черная. Бесцветными являются водяно-прозрачные, чистые минералы (горный хрусталь и алмаз). Окрашенные минералы — окраска вызывается минеральными примесями, включениями жидкости или газа, а также радиоактивным излучением. По Бетехтину выделяются минералы —эталоны того или иного цвета, окраска которых отлцчается наибольшим постоянством:
ГРУППИРОВКА МИНЕРАЛОВ ПО БЛЕСКУ Рудные минералы характеризуются металлическим блеском (галенит, пирит, халькопирит и др.); различают также алмазный блеск (алмаз, сфалерит), стеклянный блеск (кварц на поверхностях граней, берилл, кальцит, полевой шпат и др.), жирный блеск (поверхность излома кварца, нефелина, серы и др.), перламутровый блеск (слюда, опал, гипс и др.), шелковистый блеск (асбест, халцедон, псиломелан), матовый блеск (полевые шпаты, землистый гематит, каолинит, псиломелан и др.). Специфические виды блеска или отлива. Опалесцен-ция (опал) — цветовые переливы в минерале, возникающие под действием падающего света, например так называемый «огонь» у огненного опала; люминесценция (фосфоресценция); флуоресценция — излучение минералом света (послесвечение), возбуждение ионов его решетки путем облучения (кварцевой лампой), нагревания или трения (флюорит, барит); цветовой отлив или металлический блик (иризация)—игра цветов на определенных плоскостях, например у анортоклаза, Лабрадора, битовнита. ПРОЗРАЧНОСТЬ МИНЕРАЛОВ Многие минералы (особенно «чистые», беспримесные) прозрачны, например кварц, горный хрусталь, кристаллический гипс, алмаз, другие — мутные, просве- чивают, например молочный кварц, берилл, слюда. Многие рудные минералы просвечивают по краям, например сфалерит, пираргирит, и, наконец, наблюдаются абсолютно непрозрачные минералы, такие, как магнетит, хромит, галенит, золото, платина и серебро. РАЗЛИЧИЕ МИНЕРАЛОВ ПО ЦВЕТУ ЧЕРТЫ Цветную или не окрашенную (бесцветную) черту получают, царапая минералом с достаточным нажимом неглазурованную фарфоровую пластинку. Цвет оставляемой минералом черты дает нам указания на тот или иной минеральный вид. Так, например, лимонит (бурый железняк) дает коричневую черту, гематит (красный железняк)—красную, магнетит (магнитный железняк)—черную. Кварц и все минералы, имеющие твердость от 7 до 10, вообще не дают черты или имеют белую (бесцветную) черту. Во многих случаях цвет черты и цвет минерала сильно различаются.
ТВЕРДОСТЬ МИНЕРАЛОВ В соответствии с химическим составом и строением кристаллической решетки минералы обнаруживают различную твердость. Алмаз, например, имеет чрезвычайно высокую твердость, а такие минералы, как графит, гипс и тальк, наоборот, очень мягкие и царапаются ногтем. Твердость минералов определяется по шкале твердости Мооса, включающей десять минералов. Каждый последующий (по твердости) минерал царапает более мягкий предыдущий, чем и задаются интервалы твердости. В практике используется следующее деление: минералы с твердостью от 1 до 2 царапаются ногтем, с твердостью от 3 до 5 — острием ножа, минералами с твердостью от 6 до 7 можно царапать стекло, а минералами с твердостью от 8 до 10 — резать его.
|