Главная страница
Навигация по странице:

  • Формула Рэлея

  • постоянная Планка.

  • цуа. Оптика. Элементы геометрической и электронной оптики


    Скачать 1.4 Mb.
    НазваниеОптика. Элементы геометрической и электронной оптики
    Дата06.04.2022
    Размер1.4 Mb.
    Формат файлаdoc
    Имя файлаLecture08.doc
    ТипЗакон
    #446186
    страница8 из 13
    1   ...   5   6   7   8   9   10   11   12   13

    Формулы Рэлея — Джинса и Планка


    Из рассмотрения законов Стефана — Больцмана и Вина следует, что термодинамичес­кий подход к решению задача о нахождении универсальной функции Кирхгофа r,T не дал желаемых результатов. Следующая строгая попытка теоретического вывода зави­симости r,T принадлежит английским ученым Д. Рэлею и Д. Джинсу (1877—1946), которые применили к тепловому излучению методы статистической физики, восполь­зовавшись классическим законом равномерного распределения энергии по степеням свободы.

    Формула Рэлея Джинса для спектральной плотности энергетической светимости черного тела имеет вид

    (200.1)
    где =kT— средняя энергия осциллятора с собственной частотой . Для осцил­лятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы (см. § 50), поэтому средняя энергия каждой колебательной степени свободы =kT.

    Как показал опыт, выражение (200.1) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея — Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефа­на — Больцмана (см. (199.1)) из формулы Рэлея — Джинса приводит к абсурду. Дейст­вительно, вычисленная с использованием (200.1) энергетическая светимость черного тела (см. (198.3))



    в то время как по закону Стефана — Больцмана Rе пропорциональна четвертой степени температуры. Этот результат получил название «ультрафиолетовой катаст­рофы». Таким образом, в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.



    В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина), полученная им из общих теоретических соображений:



    где r,T —спектральная плотность энергетической светимости черного тела, С и А — постоянные величины. В современных обозначениях с использованием постоянной Планка, которая в то время еще не была известна, закон излучения Вина может быть записан в виде



    Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося поло­жения классической физики, согласно которому энергия любой системы может изме­няться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями — квантами, причем энергия кванта пропорциональна частоте колебания (см. (170.3)):

    (200.2)

    где h= 6,62510–34 Джс — постоянная Планка. Так как излучение испускается порци­ями, то энергия осциллятора может принимать лишь определенные дискретные значения, кратные целому числу элементарных порций энергии 0:



    В данном случае среднюю энергию  осциллятора нельзя принимать равной kT. В приближении, что распределение осцилляторов по возможным дискретным состояниям подчиняется распределению Больцмана (§ 45), средняя энергия осциллятора



    а спектральная плотность энергетической светимости черного тела



    Таким образом, Планк вывел для универсальной функции Кирхгофа формулу

    (200.3)

    которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседа­нии Немецкого физического общества. Этот день стал датой рождения квантовой физики.

    В области малых частот, т. е. при h<<kT (энергия кванта очень мала по сравнению с энергией теплового движения kT), формула Планка (200.3) совпадает с формулой Рэлея — Джинса (200.1). Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами:



    Подставляя последнее выражение в формулу Планка (200.3), найдем, что



    т. е. получили формулу Рэлея — Джинса (200.1).

    Из формулы Планка можно получить закон Стефана—Больцмана. Согласно (198.3) и (200.3),



    Введем безразмерную переменную x=h/(kt); dx=hd/(kT); d=kTdx/h. Формула для Re преоб­разуется к виду

    (200.4)

    где так как Таким образом, действительно формула Планка позволяет получить закон Стефана — Больцмана (ср. формулы (199.1) и (200.4)). Кроме того, подстановка числовых значений k, с иh дает для постоянной Стефана — Больцмана значение, хорошо согласующееся с экспериментальными данными. Закон смещения Вина получим с помощью формул (197.1) и (200.3):



    откуда



    Значение max, при котором функция достигает максимума, найдем, приравняв нулю эту произ­водную. Тогда, введя x=hc/(kTmax), получим уравнение



    Решение этого трансцендентного уравнения методом последовательных приближений дает x=4,965. Следовательно, hc/(kTmax)=4,965, откуда



    т. е. получили закон смещения Вина (см. (199.2)).

    Из формулы Планка, зная универсальные постоянные h, k и с, можно вычислить постоянные Стефана — Больцмана и Вина b. С другой стороны, зная эксперимен­тальные значения и b, можно вычислить значения h и k (именно так и было впервые найдено числовое значение постоянной Планка).

    Таким образом, формула Планка не только хорошо согласуется с эксперименталь­ными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революцион­ной квантовой гипотезе Планка.
    1   ...   5   6   7   8   9   10   11   12   13


    написать администратору сайта