Главная страница
Навигация по странице:

  • Строение и функции немембранных органелл

  • рыхлой волокнистой соединительной ткани .

  • Морфологическая классификация покровных эпителиев

  • Грудные

  • Организм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов


    Скачать 0.61 Mb.
    НазваниеОрганизм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов
    Анкорgista_ekzamen_2.docx
    Дата01.03.2018
    Размер0.61 Mb.
    Формат файлаdocx
    Имя файлаgista_ekzamen_2.docx
    ТипЗадача
    #16050
    страница8 из 18
    1   ...   4   5   6   7   8   9   10   11   ...   18

    БИЛЕТ № 16

    1. Немембранные органеллы: строение, функциональная роль. Специальные органеллы.

    2. Рыхлая волокнистая неоформленная соединительная ткань: клеточные популяции, межклеточное вещество, локализация в организме. Строение и функции фибробластов и макрофагов.

    3. Артерии: определение, классификация, функции. Строение различных типов артерий. Возрастные особенности
    Строение и функции немембранных органелл. Рибосомы - аппараты синтеза белка и полипептидных молекул. По локализации подразделяются на:

    • свободные находятся гиалоплазме;

    • несвободные или прикрепленные связаны с мембранами эндоплазматической сети.

    Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида, которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом — полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, структурные белки), прикрепленные синтезируют белки "на экспорт". Клеточный центр - цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:

    • диплосомы;

    • центросферы.

    Микрофибриллы или промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию.

    Характеристика рыхлой волокнистой соединительной ткани.Она состоит из клеток и межклеточного вещества, которое в свою очередь состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества. Морфологические особенности, отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей:

    • многообразие клеточных форм (9 клеточных типов);

    • преобладание в межклеточном веществе аморфного вещества над волокнами.

    Функции рыхлой волокнистой соединительной ткани:

    • трофическая;

    • опорная - образует строму паренхиматозных органов;

    • защитная — неспецифическая и специфическая (участие в иммунных реакциях) защита;

    • депо воды, липидов, витаминов, гормонов;

    • репаративная (пластическая).

    Функционально ведущими структурными компонентами рыхлой волокнистой соединительной ткани являются клетки различной морфологии и функции, которые и будут рассмотрены в первую очередь, а затем уже межклеточное вещество. I.Фибробласты — преобладающая популяция клеток рыхлой волокнистой соединительной ткани. Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции:

    • малодифференцированные клетки;

    • дифференцированные или зрелые клетки, или собственно фибробласты;

    • старые фибробласты (дефинитивные)фиброциты, а также специализированные формы фибробласты;

    • миофибробласты;

    • фиброкласты.

    II. Макрофагиклетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц, откуда и происходит их название. Однако фагоцитоз, хотя и важная, но далеко не единственная функция этих клеток. По современным данным макрофаги являются полифункциональными клетками. Образуются макрофаги из моноцитов крови после их выхода из кровеносного русла. Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, от области локализации, а также от их активации антигенами или лимфоцитами. Прежде всего, они подразделяются на фиксированные и свободные (подвижные). Макрофаги соединительной ткани являются подвижными или блуждающими и называются гистиоцитами. Защитная функция макрофагов проявляется в разных формах:

    • неспецифическая защита — защита посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания;

    • выделение во внеклеточную среду лизосомальных ферментов и других веществ: пирогена, интерферона, перекиси водорода, синглетного кислорода и другие;

    • специфическая или иммунологическая защита — участие в разнообразных иммунных реакциях.


    Артерии эластического типа. К таким сосудам относятся аорта и легочная артерии, они выполняют транспортную функцию и функцию поддержания давления в артериальной системе во время диастолы. В этом типе сосудов сильно развит эластический каркас, который дает возможность сосудам сильно растягиваться, сохраняя при этом целостность сосуда. Артерии эластического типа построены по общему принципу строения сосудов и состоят из внутренней, средней и наружной оболочек. Внутренняя оболочка достаточно толстая и образована тремя слоями: эндотелиальным, подэндотелиальным и слоем эластических волокон. В эндотелиальном слое клетки крупные, полигональные, они лежат на базальной мембране. Подэндотелиальный слой образован рыхлой волокнистой неоформленной соединительной тканью, в которой много коллагеновых и эластических волокон. Средняя оболочка состоит в основном из эластических элементов. Они образуют у взрослого человека 50—70 окончатых мембран, которые лежат друг от друга на расстояния 6—18 мкм и имеют толщину 2,5 мкм каждая. Наружная адвентициальная оболочка относительно тонкая, состоит из рыхлой волокнистой неоформленной соединительной ткани, содержит толстые эластические волокна и пучки коллагеновых волокон, идущие продольно или косо, а также сосуды сосудов и нервы сосудов, образованные миелиновыми и безмиелиновыми нервными волокнами. Артерии смешанного (мышечно-эластического) типа. Примером артерии смешанного типа является подмышечная и сонная артерии. Так как в этих артериях постепенно происходит снижение пульсовой волны, то наряду с эластическим компонентом они имеют хорошо развитый мышечный компонент для поддержания этой волны. Толщина стенки по сравнению с диаметром просвета у этих артерий значительной увеличивается. Внутренняя оболочка представлена эндотелиальным, подэндотелиальным слоями и внутренней эластической мембраной. В средней оболочке хорошо развиты как мышечный, так и эластический компоненты. Наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью, в которой встречаются пучки гладких миоцитов, и наружной эластической мембраной, лежащей сразу за средней оболочкой. Наружная эластическая мембрана выражена несколько слабее, чем внутренняя. Артерии мышечного типа. К этим артериям относятся артерии малого и среднего калибра, лежащие вблизи органов и внутриорганно. В этих сосудах сила пульсовой волны существенно снижается, и возникает необходимость создания дополнительных условий по продвижению крови, поэтому в средней оболочке преобладает мышечный компонент. Внутренняя оболочка имеет небольшую толщину и состоит из эндотелиального, подэндотелиального слоев и внутренней эластической мембраны. Их строение в целом такое же, как в артериях смешанного типа, причем внутренняя эластическая мембрана состоит из одного слоя эластических клеток. Средняя оболочка состоит из гладких миоцитов, расположенных по пологой спирали, и рыхлой сети эластических волокон, также лежащих спирально. Спиральное расположение миоцитов способствует большему уменьшению просвета сосуда. Эластические волокна сливаются с наружной и внутренней эластическими мембранами, образуя единый каркас. Наружная оболочка образована наружной эластической мембраной и слоем рыхлой волокнистой неоформленной соединительной тканью. В ней содержатся кровеносные сосуды сосудов, симпатические и парасимпатические нервные сплетения.

    БИЛЕТ № 17

    1. Объекты и методы исследования в гистологии.

    2. Покровный эпителий: генетическая и морфофункциональная классификации, топография.

    З. Молочная железа: строение, тканевой состав, развитие, регуляция лактации.

    Основным объектом изучения гистологии является организм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей. Современный этап развития гистологии - внедрение не только электронного микроскопа, но и других методов: цито - и гистохимии, гисторадиографии и других вышеперечисленных современных методов. Основным методом исследования биологических объектов, используемым в гистологии, является микроскопирование, т. е. изучение гистологических препаратов под микроскопом. Различают следующие виды микроскопии:



    • световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;

    • ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);

    • люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;

    • фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;

    • поляризационная микроскопия для изучения, главным образом, волокнистых структур;

    • микроскопия в темном поле для изучения живых объектов;

    • микроскопия в падающем свете для изучения толстых объектов;

    • электронная микроскопия (разрешающая способность до 0,1—0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.




    Гистохимические и цитохимические методы позволяет определять состав химических веществ, и даже их количество в изучаемых структурах. Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах. Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов. Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.



    Морфологическая классификация покровных эпителиев:

    • однослойный плоский эпителий (эндотелий — выстилает все сосуды; мезотелий — выстилает естественные полости человека: плевральную, брюшную, перикардиальную);

    • однослойный кубический эпителий — эпителий почечных канальцев;

    • однослойный однорядный цилиндрический эпителий — ядра располагаются на одном уровне;

    • однослойный многорядный цилиндрический эпителий — ядра располагаются на разных уровнях (легочный эпителий);

    • многослойный плоский ороговевающий эпителий — кожа;

    • многослойный плоский неороговевающий эпителий — полость рта, пищевод, влагалище;

    • переходный эпителий — форма клеток этого эпителия зависит от функционального состояния органа, например, мочевой пузырь.

    Генетическая классификация эпителиев:

    • эпидермальный тип, развивается из эктодермы — многослойный и многорядный эпителий, выполняет защитную функцию;

    • энтеродермальный тип, развивается из энтодермы — однослойный цилиндрический эпителий, осуществляет процесс всасывания веществ;

    • целонефродермальный тип — развивается из мезодермы — однослойный плоский эпителий, выполняет барьерную и экскреторную функции;

    • эпендимоглиальный тип, развивается из нейроэктодермы, выстилает полости головного и спинного мозга;

    • ангиодермальный тип — эндотелий сосудов, развивается из мезенхимы.





    Грудные, или молочные железы являются отличительной чертой представителей класса млекопитающих. Молочные железы — это видоизменённые потовые железы, и у первозверей молочные железы по своему строению почти не отличаются от потовых. У человека молочные железы есть как у женщин, так и у мужчин. По своей структуре они идентичны, различаются лишь степенью развития. До начала полового созревания грудь девочек и мальчиков ничем не отличается. Молочная железа (glandula mammaria или mamma) — парный орган, относящийся к типу апокринных желёз кожи. У половозрелой женщины молочные железы образуют два симметричных полушаровидных возвышения, прилегающих к передней грудной стенке в области между третьим и шестым или седьмым ребром. Большей частью своего основания каждая железа прикреплена к большой грудной мышце (m. pectoralis major) и частично к передней зубчатой мышце (m. serratus anterior). С наружной стороны между молочными железами имеется углубление, называемое пазухой (sinus mammarum). Немного ниже середины каждой груди, примерно на уровне четвёртого межрёберного промежутка или пятого ребра, на поверхности имеется небольшой выступ — грудной сосок (papilla mammae). Как правило, у нерожавших женщин сосок имеет конусообразную форму, у рожавших — цилиндрическую. Он окружён так называемой ареолой диаметром 3—5 сантиметров. Пигментация кожи соска и ареолы отличается от остальной кожи — она заметно более тёмная. Во время беременности интенсивность пигментации усиливается. В околососковом кружке имеется некоторое количество небольших рудиментарных молочных желёз, так называемых желёз Монтгомери, образующих вокруг соска небольшие возвышения. Кожа соска покрыта мелкими морщинами. У верхушки соска находятся небольшие отверстия — млечные поры, которые представляют собой окончания молочных протоков, идущих от верхушек молочных долей. Диаметр молочных протоков от 1,7 до 2,3 мм. Некоторые молочные протоки сливаются между собой, поэтому количество молочных отверстий всегда меньше количества протоков (обычно их бывает от 8 до 15). Собственно молочная, составляющая основу женской груди и называемая также телом молочной железы, представляет собой плотное тело в форме выпуклого диска, окружённое слоем жира. Тело молочной железы состоит из 15—20 отдельных конусообразных долей, расположенных радиально вокруг грудного соска, обращённых верхушкой к нему и разделённых между собой прослойками соединительной ткани. Каждая доля, в свою очередь, состоит из более крупных и более мелких долек. Каждая долька состоит из альвеол диаметром 0,05—0,07 мм. Кровоснабжение молочных желёз осуществляется в основном внутренней грудной и боковой грудной артериями. Во время менструального цикла молочная железа подвержена циклическим изменениям, однако наибольшие изменения происходят в период беременности. Молочная железа обычно имеет размер в поперечнике в среднем 10—12 см, в толщину 2—3 см. В период лактации вес молочной железы увеличивается до 300—900 г. Во время беременности железа постепенно начинает выделять так называемое молозиво, которое постепенно с развитием беременности изменяет, свои свойства и становится всё более похожим на молоко. В первые дни после родов выделяется так называемое переходное молоко, которое, как правило, гуще и желтее обычного грудного молока. Нормальное зрелое женское молоко — это чисто белая или голубовато-белая жидкость без запаха со слабым сладковатым вкусом, жирность около 4 %. Женское молоко также содержит соли и микроэлементы, необходимые для здорового роста новорожденного.

    БИЛЕТ № 18

    1. Немембранные органеллы: строение, функции. Специальные органеллы.

    2.Поперечнополосатая сердечная ткань: источники развития, структурно-

    функциональная единица: разновидности, строение, регенерация.

    3. Щитовидная и околощитовидные железы: источники развития, строение, гормоны, регуляция. Особенности секреторного цикла тироцитов.
    Строение и функции немембранных органелл. Рибосомы - аппараты синтеза белка и полипептидных молекул. По локализации подразделяются на:

    • свободные находятся гиалоплазме;

    • несвободные или прикрепленные связаны с мембранами эндоплазматической сети.

    Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида, которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом — полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, структурные белки), прикрепленные синтезируют белки "на экспорт". Клеточный центр - цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:

    • диплосомы;

    • центросферы.

    Микрофибриллы или промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию.
    1   ...   4   5   6   7   8   9   10   11   ...   18


    написать администратору сайта