Главная страница
Навигация по странице:

  • ПРИМЕР 4.5.1.

  • ПРИМЕР 4.5.2.

  • ПРИМЕР 4.5.3.

  • основы. 4. Основы расчета теории надежности. Основы теории расчета надежности технических систем


    Скачать 2.78 Mb.
    НазваниеОсновы теории расчета надежности технических систем
    Анкоросновы
    Дата25.02.2020
    Размер2.78 Mb.
    Формат файлаdocx
    Имя файла4. Основы расчета теории надежности.docx
    ТипДокументы
    #109838
    страница7 из 15
    1   2   3   4   5   6   7   8   9   10   ...   15
    структурной схемой надежности понимается наглядное представление (графическое или в виде логических выражений) условий, при которых работает или не работает исследуемый объект (система, устройство, технический комплекс и т. д.). Типовые структурные схемы представлены на рис. 4.5.3.

    Простейшей формой структурной схемы надежности является параллельно-последовательная структура. На ней параллельно соединяются элементы, совместный отказ которых приводит к отказу объекта. В последовательную цепочку соединяются такие элементы, отказ любого из которых приводит к отказу объекта.

    На рис. 4.5.3, а представлен вариант параллельно-последовательной структуры. По этой структуре можно сделать следующее заключение. Объект состоит из пяти частей. Отказ объекта наступает тогда, когда откажет или элемент 5, или узел, состоящий из элементов 1—4. Узел может отказать тогда, когда одновременно откажет цепочка, состоящая из элементов 3, 4 и узел, состоящий из элементов 1, 2. Цепь 3—4 отказывает, если откажет хотя бы один из составляющих ее элементов, а узел 1, 2 — если откажут оба элемента, т. е. элементы 1, 2. Расчет надежности при наличии таких структур отличается наибольшей простотой и наглядностью. Однако не всегда удается условие работоспособности представить в виде простой параллельно- последовательной структуры. В таких случаях используют или логические функции, или графы и ветвящиеся структуры, по которым оставляются системы уравнений работоспособности.



    На основе структурной схемы надежности составляется набор расчетных формул. Для типовых случаев расчета используются формулы, приведенные в справочниках по расчетам надежности, стандартах и методических указаниях. Прежде чем применять эти формулы, необходимо предварительно изучить их существо и область использования.

    4.5.3. Расчет надежности, основанный на использовании параллельно-последовательных структур

    Пусть некоторая техническая система D составлена из n элементов (узлов). Допустим, надежности элементов нам известны. Возникает вопрос об определении надежности системы. Она зависит от того, каким образом элементы объединены в систему, какова функция каждого из них и в какой мере исправная работа каждого элемента необходима для работы системы в целом.

    Параллельно-последовательная структура надежности сложного изделия дает представление о связи между надежностью изделия и надежностью его элементов. Расчет надежности ведется последовательно — начиная от расчета элементарных узлов структуры к ее все более сложным узлам. Например, в структуре (рис. 4.5.3, а) узел, состоящий из элементов 1—2 — элементарный узел, состоящий из элементов 1—2—3—4 — сложный. Эта структура может быть сведена к эквивалентной, состоящей из элементов 1—2—3—4 и элемента 5, соединенных последовательно. Расчет надежности в данном случае сводится к расчету отдельных участков схемы, состоящих из параллельно и последовательно соединенных элементов.

    4.5.3.1. Система с последовательным соединением элементов

    Самым простым случаем в расчетном смысле является последовательное соединение элементов системы. В такой системе отказ любого элемента равносилен отказу системы в целом. По аналогии с цепочкой последовательно соединенных проводников, обрыв каждого из которых равносилен размыканию всей цепи, мы и называем такое соединение «последовательным» (рис. 4.5.4).


    Следует пояснить, что «последовательным» такое соединение элементов является только в смысле надежности, физически они могут быть соединены как угодно.

    С позиции надежности такое соединение означает, что отказ устройства, состоящего из этих элементов, происходит при отказе элемента 1, или элемента 2, или элемента 3, или элемента n. Условие работоспособности можно сформулировать следующим образом: устройство работоспособно, если работоспособен элемент 1, и элемент 2, и элемент 3, и элемент n.

    Выразим надежность данной системы через надежности ее элементов. Пусть имеется некоторый промежуток времени (0,τ), в течение которого требуется обеспечить безотказную работу системы. Тогда, если надежность системы характеризуется законом надежности Р(t), нам важно знать значение этой надежности при t = τ, т. е. Р(τ). Это не функция, а определенное число; отбросим аргумент τ и обозначим надежность системы просто Р. Аналогично обозначим надежности отдельных элементов P1, P2, P3, ..., Pn.

    Для безотказной работы простой системы в течение времени τ нужно, чтобы безотказно работал каждый из ее элементов. Обозначим S — событие, состоящее в безотказной работе системы за время ; s1, s2, s3, ..., sn — события, состоящие в безотказной работе соответствующих элементов. Событие S есть произведение (совмещение) событий s1, s2, s3, ..., sn:



    Предположим, что элементы s1, s2, s3, ..., sn отказывают независимо друг от друга (или, как говорят применительно к надежности, «независимы по отказам», а совсем кратко: «независимы»). Тогда по правилу умножения вероятностей для независимых событий P(S ) = P(s1 ) ⋅P(s2 ) ⋅P(s3 ) ⋅ ... ⋅P(sn ) или в других обозначениях:



    а короче:



    т. е. надежность (вероятность работоспособного состояния) простой системы, составленной из независимых по отказам, последовательно соединенных элементов, равна произведению надежностей ее элементов.

    В частном случае, когда все элементы обладают одинаковой надежностью P1 = P2 = P3 = ... = Pn, выражение (4.5.2) принимает вид:



    ПРИМЕР 4.5.1. Система состоит из 10 независимых элементов, надежность каждого из которых равна Р =0,95. Определить надежность системы.

    По формуле (4.5.3) Р = 0,9510 ≈ 0,6.

    Из примера видно, как резко падает надежность системы при увеличении в ней числа элементов. Если число элементов n велико, то для обеспечения хотя бы приемлемой надежности Р системы каждый элемент должен обладать очень высокой надежностью.

    Поставим вопрос: какой надежностью Р должен обладать отдельный элемент для того, чтобы система, составленная из n таких элементов, обладала заданной надежностью Р ?

    Из формулы (4.5.3) получим:



    ПРИМЕР 4.5.2. Простая система состоит из 1000 одинаково надежных, независимых элементов. Какой надежностью должен обладать каждый из них для того, чтобы надежность системы была не меньше 0,9?

    По формуле (4.5.4)

    Интенсивность отказов системы при экспоненциальном законе распределения времени до отказа легко определить из выражения:

    λc = λ1 + λ2 + λ3 +...+λn, (4.5.5)

    т. е. как сумму интенсивностей отказов независимых элементов. Это и естественно, так как для системы, в которой элементы соединены последовательно, отказ элемента равносилен отказу системы, значит все потоки отказов отдельных элементов складываются в один поток отказов системы с интенсивностью, равной сумме интенсивностей отдельных потоков.

    Формула (4.5.4) получается из выражения:



    Среднее время работы до отказа:

    T0 = 1 / λc . (4.5.7)

    ПРИМЕР 4.5.3. Простая система S (рис. 4.5.5) состоит из трех независимых элементов, плотности распределения времени безотказной работы которых заданы формулами:



    Найти интенсивность отказов системы.



    Решение. Определяем ненадежность каждого элемента:



    Отсюда надежности элементов:



    Интенсивности отказов элементов (условная плотность вероятности отказов) — отношение f (t) к p (t):



    Складывая, имеем:

    1   2   3   4   5   6   7   8   9   10   ...   15


    написать администратору сайта