Лекции по программированию. Основные понятия классификация программного обеспечения
Скачать 1.57 Mb.
|
5.6. АКСИОМЫ ТЕСТИРОВАНИЯ Тестирование программных систем в настоящее время остается в большей мере искусством, чем наукой. При проведении тестов рекомендуется придерживаться так называемых аксиом тестирования, представляющих собой эвристические приемы. Вот некоторые из них:
5.7. КЛАССИФИКАЦИЯ ТЕСТОВ По условиям их поведения тесты могут быть классифицированы следующим образом: Доказательство (proof) - попытки найти ошибки в программе путем доказательств на основе математических теорем о правильности программы, безотносительно к внешней программной среде. Верификация программы (programverification) - попытка найти ошибки, выполняя программу в тестовой или моделируемой среде. Испытание (validation) - попытка найти ошибки, выполняя программу в заданной программной среде. Приемо-сдаточные испытания - проверка пригодности программы для эксплуатации; такие испытания обычно проводят под контролем поставщика системы. По назначению тесты классифицируются: тестирование модуля (автономное тестирование) (moduletesting) — контроль, отдельного модуля в изолированной среде (например, с помощью ведущей программы), инспекция текста модуля на сессии программистов, которая иногда дополняется математическим доказательством правильности модуля; тестирование сопряжений (integrationtesting) - контроль сопряжений между частями программной системы, как между компонентами в комплексе, так и между модулями отдельного компонента (например, у заглушки); комплексное тестирование (systemtesting) — контроль и испытание системы по отношению к исходным целям. Осуществляется с целью проверки правильной совместной работы составных частей программы. При комплексном тестировании особое внимание обычно уделяется взаимодействию компонентов. Комплексное тестирование является процессом контроля, если оно выполняется в условиях моделируемой среды, и процессом испытания при выполнении в реальной среде; системное тестирование - при системном тестировании вся система в целом обычно рассматривается как некоторый «черный ящик»; поведение этой системы исследуют, не вникая в подробности отдельных ее компонентов и взаимодействий между ними; тестирование приемлемости (acceptancetesting) - проверка соответствия программы требованиям пользователя. 5.8. ОТЛАДКА Процесс тестирования нельзя путать с процессом отладки (debugging). Первый служит лишь для обнаружения факта существования ошибок, а не для их локализации и устранения. Отладка программ обычно осуществляется с использованием специальных программных средств. Последние используются для исследования внутреннего поведения программы. Типичный отладчик позволяет вводить в программу точки останова для оценки промежуточных результатов и производить проверку и модификацию значений переменных в этих точках. Существуют несколько способов отладки программы. Распечатка текущего состоя н и я . Используется с целью фиксации фактических значений переменных для проверки хода вычислений. Для этого во время отладки программы в места, которые программист считает критическими, помещают процедуры распечатки текущего состояния переменных. После окончания теста вызовы этих процедур удаляются, и программа снова перекомпилируется. Точки останова. Используются в случае разного рода зацикливаний, когда программа в какой-то момент «зависает». В текст программы включают процедуры останова программы. Например, можно поместить процедуру вывода обычного сообщения вроде «Достигнута точка #ппп» и инициировать паузу до нажатия на любую клавишу. При таком подходе программист точно знает, до какой точки дошла программа перед зацикливанием. Метод деления п о п о л а м . Этот метод используют связисты, когда ищут обрыв в кабеле, закопанном в землю. Например, если приблизительно известно до какого момента программа успешно выполняется, то в этом месте программы ставят точку останова. Затем ставят точку в конце «подозреваемой» процедуры и посредине - между первой и последней точками. Снова компилируют и выполняют программу. Если программа дошла до второй точки, то зацикливание произошло где-то между второй и третьей точками, если не дошла - между первой и второй. После этого вставляется новая точка останова в локализованный участок и программа снова компилируется. Таким образом, постоянно сжимая район поисков, можно найти ошибочный участок. Трассировка. Является последним средством обнаружения ошибки. Она может оказаться очень эффективной, но значительно замедляет выполнение программы и, не будучи тщательно спланированной, приводит к колоссальным объемам выдаваемой информации. При трассировке происходит пошаговое выполнение программы с возможностью просмотра состояния всех переменных. 5.9. ОПТИМИЗАЦИЯ Обычно программа создается в достаточно жестком временном режиме, что заставляет программиста искать, скорее, более правильные решения, чем более эффективные. Под эффективностью программы понимают, прежде всего, скорость ее выполнения, а также ее объем. Сегодня, когда уделяется особое внимание пользовательскому интерфейсу, в список влияющих на эффективность программы факторов можно, пожалуй, также занести и удобство интерфейса. Таким образом, под оптимизацией понимается процесс улучшения программы. Оптимизация не является обязательным условием разработки программы. Однако существует целый класс программ, критичных как к скорости выполнения, так и к размеру. Таковыми являются программы графического вывода в силу большого объема вычислений, связанных с графическими преобразованиями. При проектировании больших систем оптимизация производится в два этапа, Сначала оптимизируют текст программы на языке высокого уровня, а затем наиболее критичные ко времени выполнения процедуры переписывают на язык ассемблера. Существуют следующие способы оптимизации программных кодов. Разгрузка участков повторяемости. Является способом оптимизации, который чаще всего подразумевает разгрузку циклов путем вынесения из них выражений, которые могут быть вычислены вне циклов. К этому виду преобразований относятся также «чистки» тел рекурсивных процедур, когда выражения в соответствующем цикле (или теле многократно вызываемой процедуры) выносятся и размещаются перед входом в участок повторяемости — это так называемая чистка вверх. Иногда применяют чистку вниз, когда соответствующие фрагменты кода помещаются после цикла. При этом нужно обратить внимание на то, что выносить можно только такие выражения, которые обязательно исполняются при каждом прохождении разгружаемого цикла. Замена сложных операций на более простые. Очень часто одна операция предпочтительнее другой на том основании, что выполняется быстрее, но знание таких нюансов приходит к программисту лишь с опытом. Например, операция сложения выполняется быстрее операции умножения, а умножение быстрее операции деления. Поэтому один оператор умножения переменной на некоторое небольшое целое число (обычно не более трех) лучше заменить на эквивалентное количество сложений. Выражение: Total := Summa + Summa + Summa; эффективнее выражения: Total := 3 * Summa; а операцию деления Summa := Summa/2; лучше заменить на более быстрое умножение, которое приведет к тому же самому результату Summa := Summa * 0.5; Чистка программы. Данный способ повышает качество программы за счет удаления из нее ненужных объектов и конструкций. Набор преобразований этого типа включает в себя следующие варианты оптимизации: удаление несущественных операторов, то есть операторов, не влияющих на результат программы; удаление бесполезных операторов, вычисляющих вспомогательные переменные, используемые только для подстановки в другие выражения; удаление объявленных, но неиспользуемых переменных и типов; удаление идентичных операторов; удаление процедур, к которым нет обращений. Необходимость в такого рода чистках возникает потому, что очень часто программист «захлебывается» в общем количестве переменных и процедур одного слишком большого модуля. Подчас он объявляет переменные, которые потом нигде в программе не использует. Например, программист может объявить целочисленную переменную для организации цикла, а затем, спустя какое-то время, для организации другого цикла объявляет еще одну переменную, забыв о существовании предыдущей и возможности ее повторного использования. Экономия памяти. Одним из главных ресурсов после процессорного времени, который использует программа, является объем оперативной памяти. Объем памяти зависит как от размера кода самой программы, так и от количества статических и динамических переменных. Программист должен учиться как можно экономнее использовать память. Каждую структуру следует тщательно продумывать и не требовать, скажем, для переменной, в которой будут храниться координаты текстового экрана, двухбайтового типа. Это так называемая экономия на типе переменной. Существует и еще ряд способов более экономного расходования памяти:
1) АЛГОРИТМЫ И ИХ РАЗРАБОТКА 6.1. ПОНЯТИЕ АЛГОРИТМА И ЕГО СВОЙСТВА Прежде чем компьютер сможет выполнить задачу, ему необходимо предоставить алгоритм ее решения, в точности описывающий, что и как надо делать. Поэтому изучение алгоритмов лежит в основе программирования. Алгоритм - это точное, сформулированное на определенном языке, конечное описание того или иного способа действия, основанного на применении исполнимых элементарных однозначно трактуемых шагов. Любой алгоритм имеет пять особенностей. 1) Конечность алгоритма (финитность). Означает, что алгоритм всегда должен заканчиваться после конечного числа шагов. Это требование происходит из теории вычислений, которая пытается провести грань между правильными и неправильными алгоритмами. Алгоритм считают правильным, если на любом допустимом входе он заканчивает работу и выдает результат, удовлетворяющий требованиям задачи. Неправильный алгоритм для некоторого входа может вовсе не остановиться или дать неправильный результат. Однако существуют примеры, использующие бесконечные процессы, например контроль показателей жизнедеятельности пациента в больнице или поддержание установленной высоты полета авиалайнера. Поэтому на практике термин алгоритм часто неформально используется по отношению к последовательностям этапов, не обязательно определяющим конечные процессы. Примером может служить известный нам еще со школьной скамьи алгоритм деления в столбик, который не определяет конечный процесс в случае деления 1 на 3. 2) Определенность алгоритма. Каждый шаг алгоритма должен быть точно определен, то есть действия, которые необходимо произвести должны быть недвусмысленно определены в каждом возможном случае. Чтобы исключить неоднозначность, разработаны определенные подходы для записи алгоритмов. Один из них - запись алгоритма в виде блок схемы, представляющей собой последовательность специальных пиктограмм, каждая из которых однозначно указывает на выполняемое действие. Другой подход заключается в разработке формально определенных языков, в которых каждое утверждение имеет абсолютно точный смысл. При формулировке алгоритма для его выполнения на компьютере применяются языки программирования. 3) Наличие входных данных. Алгоритм имеет некоторое число входных величин, заданных ему до начала работы. Иногда это число может равняться нулю, однако это означает, что входные величины должны быть описаны как часть алгоритма. Например, алгоритм сложения числа 777 с числом 333. В этом случае шаги 1 и 2 должны быть записаны так: Шаг 1. Записать число 777. Шаг 2. Под ним записать число 333 ……… То есть, если даже входные величины отсутствуют, то какие-то величины будут описаны в самом алгоритме. В противном случае алгоритм не может быть выполнен.
Это связано с тем. что любая программа, в основе которой лежит тот или иной алгоритм, должна выполняться на реальном вычислительном устройстве. Поэтому большое значение имеет время выполнения программы, на которое влияет количество шагов алгоритма. Кроме того, программа занимает определенный объем в памяти компьютера. Поэтому количество шагов косвенно влияет на еще один показатель эффективности - размер программы. 6.2. ПРЕДСТАВЛЕНИЕ АЛГОРИТМА И ПСЕВДОКОД Алгоритм является абстракцией и поэтому один и тот же алгоритм можно представить многими способами. Если с алгоритмом работает человек, то это может быть традиционный язык (русский, английский), язык картинок и пиктограмм, а также математические формулы. В программировании эти проблемы решают путем создания четко определенного набора составных блоков, называемых примитивами, из которых могут конструироваться представления алгоритмов. Набор примитивов вместе с набором правил, устанавливающих, как эти примитивы могут комбинироваться для представления более сложных идей, образуют язык программирования. Каждый примитив состоит из двух частей: синтаксической и семантической. Синтаксис относится к символьному представлению примитива, а семантика - к смысловому значению примитива. Чтобы получить набор примитивов, пригодных для представления алгоритмов, выполняемых на вычислительной машине, можно использовать машинные команды. Однако описание алгоритма на таком уровне детализации весьма утомительно, поэтому обычно используется набор примитивов более высокого уровня, являющийся высокоуровневым языком программирования. Псевдокод - это система обозначений, предназначенная для неформального представления идей в процессе разработки алгоритмов. Один из путей создания псевдокода - ослабление правил того формального языка программирования, на котором требуется записать окончательную версию алгоритма. В подобной ситуации псевдокод может состоять из синтаксических и семантических структур, аналогичных структурам целевого языка программирования, но не столь формализованных. Альтернатива выражается на псевдокоде следующей структурой: if (условие) then (действие) else (действие) Сокращенный синтаксис этого конструкта когда не предусмотрено действие для варианта else выглядит так: if (условие) then (действие) Цикл-пока является алгоритмической структурой, которая заключается в необходимости продолжать выполнение последовательности действий до тех пор, пока некоторое условие остается верным. Эта инструкция предписывает проверить условие и, если оно верно, выполнить действие, а затем вновь проверить условие. Если при очередной проверке условие оказывается неверным, следует перейти к инструкции, следующей за данной структурой. while (условие) do (действие) Цикл-doна псевдокоде имеет следующий вид: repeat (действие) until (условие) Оператор присваивания. Часто желательно ссылаться на некоторые значения с помощью описательных имен. Для установки подобных связей будет использоваться следующая конструкция присваивания: assign имя the value выражение здесь параметр имя - это описательное имя, а параметр выражение описывает значение, связываемое с этим именем. Например: assign Итог the value Цена + Налог При ее выполнении результат суммирования значений переменных Цена и Налог будет связан с именем Итог . Процедуры. Используются для описания действий, которые могут выступать в роли вспомогательных программ в других приложениях. Такие программные элементы имеют несколько различных названий, а именно: подпрограммы, процедуры и функции. В псевдокоде для обозначения заголовка, по которому можно распознать данный блок псевдокода используется термин procedure: procedure имя здесь имя — это конкретное название, присвоенное данному блоку. Ниже следуют инструкции, определяющие выполняемые в этом блоке действия. Процедуры должны разрабатываться так, чтобы быть как можно более общими. Например, процедура сортировки списков имен должна быть способна сортировать любой список, а не какой-то один определенный. Поэтому она должна быть написана таким способом, чтобы подлежащий сортировке список не определялся в самой процедуре, а передавался ей в качестве входных данных, представленных некоторым обобщенным именем. Такие обобщенные имена в псевдокоде выделяют угловыми скобками и указывают их в круглых скобках а той же строке, в которой определяется имя данной процедуры. В частности, процедура Сортировка, предназначенная для сортировки произвольных списков имен, будет начинаться следующей инструкцией: procedure Сортировка(<список>) Таким образом, назначение псевдокода состоит в предоставлении средств, позволяющих записывать схемы алгоритмов лишь в общих чертах, а не в написании законченных формальных программ. Поэтому в псевдокоде нет запрета на использование неформальных фраз, запрашивающих такие действия, детали которых не определены достаточно строго. Поиск более удачных средств представления алгоритмов продолжается и поныне. Существующие тенденции заключаются в использовании графических методов, однако псевдокод остается достаточно эффективным при разработке процедурных компонентов небольшого размера, входящих в состав программных систем. |