физика билеты. физика 1-18. Основные величины
Скачать 0.57 Mb.
|
Особенности теплового расширения воды.Особенностью является то, что плотность воды от 0 до 4 градусов увеличивается, а после 4 градусов - уменьшается с ростом температуры. Обычно у всех сред плотность с ростом температуры закономерно уменьшается, объем увеличивается. 14) Возьмем вещество в виде жидкости и находящегося с ней в равновесии насыщенного пара и, не изменяя объема, станем отнимать от него тепло. Этот процесс будет сопровождаться понижением температуры вещества и соответствующим уменьшением давления. Поэтому точка, изображающая состояние вещества на диаграмме (р,Т), перемещается вниз по кривой испарения (рис. 47а). Это продолжается до тех пор, пока не будет достигнута температура кристаллизации вещества, отвечающая равновесному значению давления. Обозначим эту температуру Tтр. Все время, пока идет процесс кристаллизации, температура и давление остаются неизменными. Отводимое при этом тепло представляет собой тепло, выделяющееся при кристаллизации. Рис. 47. Диаграммы состояния Температура Tтр и соответствующее ей равновесное давление ртр — единственные значения температуры и давления, при которых могут находиться в равновесии три фазы вещества: твердая, жидкая и газообразная. Соответствующая точка на диаграмме (р, Т) называется тройной точкой. Таким образом, тройная точка определяет условия, при которых могут находиться в равновесии одновременно три фазы вещества. По окончании процесса кристаллизации в равновесии будут находиться твердая и газообразная фазы. Если продолжать отнимать от вещества тепло, то температура снова начнет понижаться. Соответственно уменьшается давление паров, находящихся в равновесии с кристаллической фазой. Точка, изображающая состояние вещества, перемещается вниз по кривой сублимации. Температура тройной точки есть температура, при которой плавится вещество, находясь под давлением, равным ртр. При других давлениях температура плавления будет иной. Связь между давлением и температурой плавления изобразится, кривой плавления, начинающейся в тройной точке. Таким образом, тройная точка оказывается лежащей на пересечении трех кривых, определяющих условия равновесия двух фаз: твердой и жидкой, жидкой и газообразной и, наконец, твердой и газообразной. В зависимости от соотношения между удельными объемами твердой и жидкой фаз кривая плавления идет либо так, как на рис. 47а , либо так, как на рис. 47б . Кривые плавления, испарения и сублимации разбивают координатную плоскость на три области. Слева от кривых сублимации и плавления лежит область твердой фазы, между кривыми плавления и испарения заключена область жидких состояний и, наконец, справа от кривых испарения и сублимации простирается область газообразных состояний вещества. Любая точка в одной из этих областей изображает соответствующее однофазное состояние вещества (все время имеются в виду только равновесные состояния, т. е. такие состояния, в которых вещество при неизменных внешних условиях пребывает сколь угодно долго). Всякая точка, лежащая на одной из разграничивающих области кривых, изображает состояние равновесия двух соответствующих фаз вещества. Тройная точка изображает состояние равновесия всех трех фаз. 15) Реальный газ — в общем случае — газообразное состояние реально существующего вещества. В термодинамике под реальным газом, понимается газ, который не описывается в точности уравнением Клапейрона — Менделеева, в отличие упрощенной его модели — гипотетического идеального газа, строго подчиняющегося вышеуказанному уравнению. Обычно под реальным газом понимают газообразное состояние вещества во всем диапазоне его существования. Однако, существует и другая классификация, по которой реальным газом называется высоко перегретый пар, состояние которого незначительно отличается от состояния идеального газа, а к парам относят перегретый пар, состояние которого заметно отличается от идеального газа, и насыщенный пар (двухфазовая равновесная система жидкость — пар), который, вообще, не подчиняется законам идеального газа. С позиции молекулярной теории строения вещества реальный газ — это газ, свойства которого зависят от взаимодействия и размеров молекул. Идеа́льный газ — теоретическая модель, широко применяемая для описания свойств и поведения реальных газов при умеренных давлениях и температурах. В этой модели, во-первых, предполагается, что составляющие газ частицы не взаимодействуют друг с другом, то есть их размеры пренебрежимо малы, поэтому в объёме, занятом идеальным газом нет взаимных столкновений частиц. Частицы идеального газа претерпевают столкновения только со стенками сосуда. Второе предположение: между частицами газа нет дальнодействующего взаимодействия, например, электростатического или гравитационного. Дополнительное условие упругих столкновений между молекулами и стенками сосуда в рамках молекулярно-кинетической теории приводит к термодинамике идеального газа я рот ебал это писать) 16))) Абсолю́тный нуль температу́ры (реже — Абсолю́тный ноль температуры) — минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 году X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой — тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному нулю соответствует температура −273,15 °C или -459,67 °F (по Фаренгейту). Понятие абсолютного нуля исходит из самой сущности температуры. Любое тело обладает энергией, которую отдает во внешнюю среду в ходе теплопередачи. При этом снижается температура тела, т.е. энергии остается меньше. Теоретически этот процесс может продолжаться до тех пор, пока количество энергии не достигнет такого минимума, при котором отдавать ее тело уже не сможет. Отдаленное предвестие такой идеи можно найти уже у М.В.Ломоносова. Великий русский ученый объяснял теплоту «коловратным» движением. Следовательно, предельная степень охлаждения – это полная остановка такого движения. По современным представлениям, абсолютный нуль температуры – это такое состояние вещества, при котором молекулы наименьшим возможным уровнем энергии. При меньшем количестве энергии, т.е. при более низкой температуре ни одно физическое тело существовать не может.
Абсолютную температуру, измеренную в температурной шкале Кельвина называют абсолютной термодинамической температурой, или просто термодинамической температурой. 17) 18) Изопроце́ссы — термодинамические процессы, во время которых количество вещества и один из параметров состояния: давление, объём, температура или энтропия — остаётся неизменным. Так, неизменному давлению соответствует изобарный процесс, объёму — изохорный, температуре — изотермический, энтропии — изоэнтропийный (например, обратимый адиабатический процесс). Линии, изображающие данные процессы на какой-либо термодинамической диаграмме, называются изобара, изохора, изотерма и адиабата соответственно. Изопроцессы являются частными случаями политропного процесса. Закон Бойля Мариотта — При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно. Это означает, что с ростом давления на газ его объем уменьшается, и наоборот. Для неизменного количества газа закон Бойля — Мариотта можно также интерпретировать следующим образом: при неизменной температуре произведение давления на объем является величиной постоянной. Закон Бойля — Мариотта выполняется строго для идеального газа и является следствием уравнения Менделеева Клапейрона. Для реальных газов закон Бойля — Мариотта выполняется приближенно. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах. Чтобы было легче понять Закон Бойля Мариотта представим, что вы сдавливаете надутый воздушный шарик. Поскольку свободного пространства между молекулами воздуха достаточно, вы без особого труда, приложив некоторую силу и проделав определенную работу, сожмете шарик, уменьшив объем газа внутри него. Это одно из основных отличий газа от жидкости. В шарике с жидкой водой, например, молекулы упакованы плотно, как если бы шарик был заполнен микроскопическими дробинками. Поэтому вода не поддается, в отличие от воздуха, упругому сжатию. Так же есть : Уравнение Менделеева Клапейрона : Закон Шарля : Закон Гей Люссака : В законе мы использовали : — Давление в 1 сосуде — Объем 1 сосуда — Давление во 2 сосуде — Объем 2 сосуда Формулировка закона Шарля следующая: Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа. Закон Гей-Люссака в современной формулировке утверждает, что при постоянном давлении объём постоянной массы газа пропорционален абсолютной температуре. |