Главная страница

отчет по практике. Основные задачи учебной практики


Скачать 287.4 Kb.
НазваниеОсновные задачи учебной практики
Анкоротчет по практике
Дата05.02.2022
Размер287.4 Kb.
Формат файлаdocx
Имя файлаотчет по практике.docx
ТипДокументы
#352297
страница1 из 4
  1   2   3   4

ВВЕДЕНИЕ

Компания «Татнефть» – одна из крупнейших в нефтегазовом комплексе России. Основная деятельность компании «Татнефть» осуществляется на территории Российской Федерации. Компания является холдинговой структурой, в состав которой входят нефтегазодобывающие управления, нефтегазоперерабатывающие, нефтехимические предприятия, а также предприятия и сервисные производства, реализующие нефть, продукты нефтегазопереработки и нефтехимии.

Цель практики – ознакомление студентов с основными технологическими процессами и оборудованием.

Основные задачи учебной практики:

1. Ознакомление с организационной структурой предприятия, действующей в нем системой управления, основными объектами деятельности данного предприятия.

2. Ознакомление с процессами добычи нефти и газа и обустройством нефтяного месторождения.

3. Ознакомление с основным оборудованием при эксплуатации нефтяных и газовых скважин.

4. Ознакомление с нефтяным промыслом и его производственно-хозяйственной деятельностью.

5. Получение определенных практических знаний, способствующих лучшему усвоению теоретического материала в процессе дальнейшего обучения по специальности.


  1. критерии и принципы выделения эксплуатационных объектов

Эксплуатационным объект - это пласт или группа пластов, предназначенных для разработки одной серией добывающих скважин при обеспечении возможности регулирования разработки каждого из пластов или зональных интервалов отдельно.

Эксплуатационный объект, в который объединяются несколько пластов одной залежи или несколько залежей различных продуктивных пластов, называют многопластовым эксплуатационным объектом. Под объектом разработки понимают отдельный пласт или зональный интервал эксплуатационного объекта, по которому осуществляется контроль и регулирование разработки.

Каждый эксплуатационный объект разбуривается по определенной системе. Устанавливаются определенные расстояния между добывающими скважинами, их взаимное расположение, параметры сетки скважин. При определении порядка ввода эксплуатационных объектов в разработку решается вопрос об определенной системе расположения скважин по разрезу месторождения.

Выделяют следующие группы факторов при анализе материалов по методике и практике выделения эксплуатационных объектов:

а) геолого-промысловые;

б) гидродинамические;

в) технические;

г) технологические

Односторонний учет только одной из этих групп не позволяет объективно подойти к выделению эксплуатационных объектов.

Геолого-промысловые факторы. Из этой группы учитываются следующие:

1. возможность и однозначность расчленения разреза месторождения, корреляция отложений и выделения продуктивных пластов;

2. литологическая характеристика продуктивных пластов;

3. общая, эффективная и нефтенасыщенная мощности продуктивных пластов;

4. коллекторские свойства пластов по керну и промыслово-геофизическим данным;

5. результаты опробования, оценка фильтрационных параметров продуктивных пластов гидродинамическими методами;

6. физико-химические свойства нефти, газа и воды;

7. мощность промежуточных толщ между продуктивными пластами, мощность покрышек;

8.методика определения ВНК и соотношение площадей в пределах внешних контуров нефтегазоносности;

9. запасы нефти и газа в продуктивных пластах и их соотношение по разрезу месторождения;

10. первоначальные пластовые давления в залежах и их соотношение по разрезу месторождения;

11. гидрогеологическая характеристика и режим залежей.

Гидродинамические факторы. Гидродинамические расчеты при выделении эксплуатационных объектов применяются для решения ряда задач, важнейшими из которых являются:

1. установление годовой добычи по залежи каждого пласта:

2. определение динамики добычи нефти по каждому пласту до конца разработки;

3. установление продуктивности и затем годовой добычи объединяемых в один эксплуатационный объект продуктивных пластов;

4. оценка динамики добычи нефти, воды в целом по месторождению;

5. расчет обводнения скважин, залежей и эксплуатационных объектов;

6. определение продолжительности отдельных стадий разработки месторождения;

7. нахождение оптимального уровня добычи нефти по месторождению с учетом его по залежи каждого пласта, объекта эксплуатации при условии обеспечения плановых заданий.

Технические факторы.

1. Способ и технические возможности эксплуатации.

2. Выбор диметра эксплуатационных колонн.

3. Выбор диаметра НКТ и т.д.

Технологические факторы

1. выбор сетки добывающих скважин каждого объекта эксплуатации.

2. выбор метода поддержания пластового давления.

3. возможность применения различных методов повышения нефтеотдачи.

Таким образом, выделение эксплуатационных объектов разработки является оптимизационной задачей.

Обычно выделение эксплуатационных объектов проводят в два этапа.

а) на 1-м этапе рассматривают геолого-геофизические особенности, благоприятствующие и препятствующие объединению в группы пластов для совместной разработки;

б) на 2-ом этапе этот вопрос решают с учетом технологических и экономических факторов.

2. Системы разработки нефтяных месторождений

Системой разработки нефтяного месторождения следует называть совокупность взаимосвязанных инженерных решений, определяющих объекты разработки; последовательность и темп их разбуривания и обустройства; наличие воздействия на пласты с целью извлечения из них нефти и газа; число, соотношение и расположение нагнетательных и добывающих скважин; число резервных скважин, управление разработкой месторождения, охрану недр и окружающей среды. Построить систему разработки месторождения означает найти и осуществить указанную выше совокупность инженерных решений.

Система разработки месторождений должна отвечать требованиям максимального извлечения нефти или газа из недр в кратчайший срок при минимальных затратах.

Проектом разработки определяются число и система расположения эксплуатационных и нагнетательных скважин, уровень добычи нефти и газа, методы поддержания пластового давления и т. п.

Разработка отдельных залежей нефти или газа производится посредством системы эксплуатационных и нагнетательных скважин, обеспечивающих добычу нефти или газа из пласта. Комплекс всех мероприятий, обеспечивающих разработку залежи, определяет систему разработки.

Основными элементами системы разработки залежей являются: способ воздействия на пласт, размещение эксплуатационных и нагнетательных скважин, темп и порядок разбуривания эксплуатационных и нагнетательных скважин.

Важнейшими элементами системы разработки являются методы воздействия на пласт, так как в зависимости от них будут решаться остальные вопросы разработки залежи. Такими методами могут явиться различные виды заводнения, закачка газа в газовую шапку или в нефтяную часть пласта, солянокислотные обработки, гидроразрывы и ряд других мер, направленных на поддержание пластового давления и повышение продуктивности скважин.

 

3. РазмещениеСКВАЖИН ПО ПЛОЩАДИ ЗАЛЕЖИ

Сетка скважин – это взаимное размещение добывающих, нагнетательных, контрольных и других групп скважин на эксплуатационном объекте. Правильный выбор сетки скважин—важнейшее звено в обосновании рациональной системы разработки объекта.

Поскольку затраты на бурение скважин—одна из наибольших частей капитальных затрат на разработку месторождения, необходимо предотвращать бурение лишних скважин, т. е. переуплотнение сетки. В то же время количество скважин должно быть достаточным для обеспечения необходимых темпов добычи нефти и возможно более высокого коэффициента извлечения нефти. Следовательно, необходимо обосновывать оптимальную сетку скважин.

Системы разработки подразделяют на следующие: с размещением скважин по равномерной сетке и с размещением скважин по неравномерной сетке (преимущественно рядами). Системы разработки с размещением скважин по равномерной сетке различают: по форме сетки; по плотности сетки; по темпу ввода скважин в работу; по порядку ввода скважин в работу относительно друг друга и структурных элементов залежи. Сетки по форме бывают квадратными и треугольными (шестиугольными). Основные системы размещения скважин:

-Треугольная -заложение каждой новой скважины в вершине треугольника, в двух других вершинах которого уже имеются пробуренные скважины. –Кольцевая -размещение скважин последовательными рядами вокруг скважины-открывательницы на одинаковых гипсометрических отметках базисного продуктивного горизонта.

- Профильная-размещение скважин на разных гипсометрических отметках по профилю (линии), пересекающему структуру или площадь залежи в определенном направлении, с целью получения профильного геологического разреза.
4. Геолого-физическая характеристика объектов

Геолого-физическую характеристику месторождения подразделяют на следующие разделы:

  1. Геологическое строение месторождения

В котором излагают историю открытия месторождения, а также изучения геологического строения полевыми геофизическими методами, поисково-разведочным и эксплуатационным бурением.

Раздел содержит структурно-тектоническую карту района. Характеризуют основные структур­но-тектонические элементы в пределах площади рассматриваемого месторождения.

Дают сводный литолого-стратиграфический разрез района. Разрез характеризуют в стратиграфи­ческих границах продуктивных отложений рассматриваемого месторождения.

Приводят общие сведения о нефтегазоносности: этаж нефтегазоносности. продуктивные пласты, общее число залежей нефти и газа.

Для характеристики геологического строения продуктивных пластов рекомендуется привести характерные геологические разрезы, геолого-статистические разрезы, карты геологических парамет­ров.

Характеристику продуктивных залежей по результатам интерпретации ГИС представляют по нескольким залежам.

После изложения фактических данных формулируют выводы по состоянию изученности геологи­ческого строения.

  1. Гидрогеологические и инженерно-геологические условия

Дают краткую характеристику:

-водоносных горизонтов и комплексов (глубина залегания, напорность. водообильность, минера­лизация и тип воды, содержание основных химических компонентов);

-инженерно-геологических и геоэкологических условий в границах месторождения.

3) Физико-гидродинамическая характеристика продуктивных пластов

По результатам лабораторного изучения керна приводят литологическую характеристику пород — описание типа коллектора, его состава, особенностей литологического строения.

Оценивают возможность учета литологической характеристики пород при анализе текущего состо­яния и проектировании разработки.

Формулируют выводы по состоянию изученности фильтрационно-емкостных свойств пород по керну.

Приводят обобщенные результаты лабораторных исследований по определению фазовых прони­цаемостей. остаточной нефтенасыщенности, коэффициента вытеснения. При недостаточном объеме исследований приводят данные по пластам-аналогам.Делают выводы по состоянию изученности характеристик вытеснения флюидов по данным лабо­раторных исследований керна.Характеризуют используемый комплекс ГИС по выделению коллекторов, приводят сведения по определению их фильтрационно-

4) Свойства и состав пластовых флюидов. В разделе приводят следующие сведения:

-свойства пластовой и дегазированной нефти;

-компонентный состав нефти и растворенного газа;

-для залежей с газовыми шапками или газовых залежей: свойства, состав газа газовых шапок (или свободного газа) и конденсата;

-для месторождений высокопарафинистых нефтей: оценка возможности выпадения твердой фазы из нефти при изменении пластовых условий и при применении специальных технологий разработ­ки и эксплуатации нефтяных месторождений: для залежей, по которым рассматривают варианты разработки на режиме истощения: зависи­мости газосодержания. объемного коэффициента, плотности и вязкости пластовой нефти и нефтяного газа от давления при пластовой температуре:

-для месторождений, разрабатываемых с применением тепловых методов: зависимости вязкос­ти пластовых жидкостей от давления и температуры; растворимость пара в пластовых жидкостях (при закачке пара); теплофизические свойства пластовых флюидов;

-свойства и химический состав пластовых вод;

5) Сводная геолого-физическая характеристика продуктивных пластов

Для нефтяных месторождений сводную геолого-физическую характеристику продуктивных плас­тов представляют для нескольких пластов по следующим параметрам:

1 Абсолютная отметка кровли (интервал изменения), м

2 Абсолютная отметка ВНК (интервал изменения), м

3 Тип залежей

4 Тип коллектора

5 Площадь нефтеносности, 103 м2

6 Средняя общая толщина, м

7 Средняя эффективная нефтенасыщенная толщина, м

8 Коэффициент песчанистости, единиц

9 Коэффициент расчлененности, единиц

10 Средний коэффициент проницаемости, 10-3 мкм2

11 Средний коэффициент пористости, единиц

12 Средний коэффициент начальной нефтенасыщенности, единиц

13 Начальная пластовая температура, °С

14 Начальное пластовое давление, МПа

15 Давление насыщения нефти газом, МПа

16 Газовый фактор нефти, м3/т

17 Плотность нефти в пластовых условиях, кг/м3

18 Плотность нефти в поверхностных условиях, кг/м3

19 Вязкость нефти в пластовых условиях, мПа·с

20 Объемный коэффициент нефти, единиц

21 Плотность воды в пластовых условиях, кг/м3

22 Вязкость воды в пластовых условиях, мПа·с

23 Удельный коэффициент продуктивности, м3/(сут·МПа·м)

24 Коэффициент вытеснения нефти водой (газом), единиц

Данные могут быть детализированы по залежам или обобщены по ранее выделенным эксплуата­ционным объектам.

5. Бурение скважин

Бурение — это процесс сооружения скважины путем разрушения горных пород. Скважиной называют горную выработку круглого сечения, сооружаемую без доступа в нее людей, у которой длина во много раз больше диаметра. Верхняя часть скважины называется устьем, дно — забоем, боковая поверхность — стенкой, а пространство, ограниченное стенкой, — стволом скважины. Длина скважины — это расстояние от устья до забоя по оси ствола, а глубина — проекция длины на вертикальную ось. Длина и глубина численно равны только для вертикальных скважин. Однако они не совпадают у наклонных и искривленных скважин. Существует несколько способов бурения, но промышленное применение нашло механическое бурение. Механическое бурение подразделяется на ударное и вращательное.

Вращательное бурение. Нефтяные и газовые скважины в настоящее время бурятся методом вращательного бурения. Распространенные способы вращательного бурения — роторное, тур­бинное и бурение электробуром — предполагают вращение разрушающего породу рабочего инструмента — долота. Разрушенная порода удаляется из скважины закачиваемым в колонну труб и выходящим через заколонное пространство буровым раствором, пеной или газом.

Роторное бурение. При роторном бурении долото вращается вместе со всей колонной бурильных труб; вращение передается через рабочую трубу от ротора, соединенного с силовой установкой системой трансмиссий. На­грузка на долото создается частью веса бурильных труб. При роторном бурении максимальный крутящий момент колонны за­висит от сопротивления породы вращению долота, сопротивлений трению колонны и вращающейся жидкости о стенку скважины и от инерционного эффекта упругих крутильных колебаний.

Буровая установка — это комплекс наземного оборудования, необходимый для выполнения операций по проводке скважины. В состав буровой установки входят

• буровая вышка;

• оборудование для механизации спускоподъемных операций;

• наземное оборудование, непосредственно используемое при бурении;

• силовой привод;

• циркуляционная система бурового раствора;

• привышечные сооружения.

Наземное оборудование, непосредственно используемое при бурении, включает вертлюг, буровые насосы, напорный рукав и ротор. В качестве забойных двигателей при бурении используют турбобур, электробур и винтовой двигатель, устанавливаемые непосредственно над долотом. Инструмент, используемый при бурении, подразделяется на основной (долота) и вспомогательный (бурильные трубы, бурильные замки, центраторы). Долота бывают лопастные, шарошечные, алмазные и твердосплавные.

В цикл строительства скважины входят:

1) подготовительные работы;

2) монтаж вышки и оборудования;

3) подготовка к бурению;

4) процесс бурения;

5) крепление скважины обсадными трубами и ее тампонаж;

6) вскрытие пласта и испытание на приток нефти и газа.

Процесс бурения начинают, привинтив первоначально к ведущей трубе квадратного сечения долото. Вращая ротор, передают через ведущую трубу вращение долоту. Во время бурения происходит непрерывный спуск (подача) бурильного инструмента таким образом, чтобы часть веса его нижней части передавалась на долото для обеспечения эффективного разрушения породы. В процессе бурения скважина постепенно углубляется. После того как ведущая труба вся уйдет в скважину, необходимо нарастить колонну бурильных труб. Наращивание выполняется следующим образом. Сначала останавливают промывку. Далее бурильный инструмент поднимают из скважины настолько, чтобы ведущая труба полностью вышла из ротора. При помощи пневматического клинового захвата инструмент подвешивают на роторе. Далее ведущую трубу отвинчивают от колонны бурильных труб и вместе с вертлюгом спускают в шурф — слегка наклонную скважину глубиной 15…16 м, располагаемую в углу буровой. После этого крюк отсоединяют от вертлюга, подвешивают на крюке очередную, заранее подготовленную трубу, соединяют ее с колонной бурильных труб, подвешенной на роторе, снимают колонну с ротора, опускают ее в скважину и вновь подвешивают на роторе. Подъемный крюк снова соединяют с вертлюгом и поднимают его с ведущей трубой из шурфа. Ведущую трубу соединяют с колонной бурильных труб, снимают последнюю с ротора, включают буровой насос и осторожно доводят долото до забоя. После этого бурение продолжают. При бурении долото постепенно изнашивается и возникает необходимость в его замене. Для этого бурильный инструмент, как и при наращивании, поднимают на высоту, равную длине ведущей трубы, подвешивают на роторе, отсоединяют ведущую трубу от колонны и спускают ее с вертлюгом в шурф. Затем поднимают колонну бурильных труб на высоту, равную длине бурильной свечи, подвешивают колонну на роторе, свечу отсоединяют от колонны и нижний конец ее устанавливают на специальную площадку — подсвечник, а верхний — на специальный кронштейн, называемый пальцем. В такой последовательности поднимают из скважины все свечи. После этого заменяют долото и начинают спуск бурильного инструмента. Этот процесс осуществляется в порядке, обратном подъему бурильного инструмента из скважины. Конструкция скважины предусматривает крепление стенок с помощью, так называемых обсадных труб. Обсадные трубы составляются в обсадные колонны и спускаются в скважину. Первая обсадная колонна, спускаемая в скважину, имеет максимальный диаметр и называется – направлением, предохраняет устье скважин от размыва грунта циркулирующим буровым раствором, её длина составляет – 5 м., а диаметр – 527 мм. Следующая колонна – кондуктор, служит для перекрытия неустойчивых верхних пород и водоносных горизонтов. Для предотвращения и устранения осложнений при бурении, спускают несколько промежуточных колонн. Последняя колонна, предназначаемая для работы в продуктивном горизонте, называется экcплуатационной. При подсчете числа колонн, спущенных в скважину, направление и кондуктор не учитываются. Низ всех спускаемых колонн, заканчивается короткой утолщенной трубой, называемой башмаком. При больших глубинах бурения возникает необходимость спустить колонну перекрывающую определенный интервал без выхода к устью скважины. Такая колонна называется хвостовиком или потайной колонной. После спуска каждой колонны производится цементаж затрубного пространства. Цементаж — это операция, состоящая из закачки цементного раствора в затрубное пространство колонны и последующей выдержки для застывания этого раствора.

В процессе проводки скважины возможны разного рода осложнения, в частности обвалы пород, поглощения промывочной жидкости, нефте-, газо- и водопроявления, прихваты бурильного инструмента, аварии, искривление скважин. Обвалы пород возникают вследствие их неустойчивости (трещиноватости, склонности разбухать под влиянием воды). Характерными признаками обвалов являются:

• значительное повышение давления на выкиде буровых насосов;

• резкое повышение вязкости промывочной жидкости;

• вынос ею большого количества обломков обвалившихся пород и т. п. Поглощение промывочной жидкости — явление, при котором жидкость, закачиваемая в скважину, частично или полностью поглощается пластом. Обычно это происходит при прохождении пластов с большой пористостью и проницаемостью, когда пластовое давление оказывается меньше давления столба промывочной жидкости в скважине. Интенсивность поглощения может быть от слабой до катастрофической, когда выход жидкости на поверхность полностью прекращается. Для предупреждения поглощения применяют следующие методы:

• промывка облегченными жидкостями;

• ликвидация поглощения закупоркой каналов, поглощающих жидкость (за счет добавок в нее инертных наполнителей — асбеста, слюды, рисовой шелухи, молотого торфа, древесных опилок, целлофана; заливки быстросхватывающихся смесей и т. д.);

• повышение структурно-механических свойств промывочной жидкости (добавкой жидкого стекла, поваренной соли, извести и т. п.).

Газо-, нефте- и водопроявления имеют место при проводке скважин через пласты с относительно высоким давлением, превышающим давление промывочной жидкости. Под действием напора воды происходит ее перелив или фонтанирование, а под действием напора нефти или газа — непрерывное фонтанирование или периодические выбросы. К мероприятиям, позволяющим избежать газо-, нефте- и водопроявлений, относят

• правильный выбор плотности промывочной жидкости;

• предотвращение понижения ее уровня при подъеме колонны бурильных труб и при поглощении жидкости.

Прихваты бурильного инструмента возникают по следующим причинам:

• заклинивание бурильного инструмента в суженных частях ствола или при резких искривлениях скважины, при обвалах неустойчивых пород, при осаждении разбуренной породы в случае прекращения циркуляции;

• образование на стенках скважины толстой и липкой корки, к которой прилипает бурильный инструмент, находящийся без движения.

Ликвидация прихватов — сложная и трудоемкая операция. Поэтому необходимо принимать все возможные меры, чтобы их избежать.

Освоение скважины — это комплекс геолого-технологических мероприятий, направленных на вызов притока из продуктивного пласта и обеспечивающих сохранение максимальной продуктивности коллектора. Цель освоения — восстановление естественной проницаемости пласта-коллектора, очищение перфорационных отверстий и получения того количества продукции скважины, которое соответствует потенциальным возможностям конкретной скважины. Различают следующие способы освоения скважин: замена скважинной жидкости на жидкость с меньшей плотностью, свабирование, компрессирование, освоение струйным насосом, тартание, освоение глубинными насосами, освоение при помощи ГНКТ. Замена жидкости на более легкую. Проводят смену скважинного раствора прямой или обратной промывкой при спущенных НКТ и герметизированном устье. Глинистый раствор заменяют на пластовую воду, пластовую воду на пресную или нефть, а нефть замещают различными пенными системами. При смене пластовой воды плотностью 1200 кг/м3 на нефть с плотностью 900кг/м3 максимальное снижение давления составит всего (1200-900)/1200 * 100% = 25% от давления, создаваемого столбом пластовой воды. Если данным методом вызвать приток нефти из пласта не удается, применяют другие способы освоения. Обычно это свабирование или компрессирование.

Свабирование. Одним из самых распространенных способов снижения забойного давления в скважине является свабирование. Сваб представляет собой поршень, оборудованный клапаном, который спускают на кабеле в лифт НКТ. Клапан при спуске поршня вниз открывается, а при ходе вверх закрывается. Уплотнение сваба достигается за счет резиновых манжет, укрепленных на металлическом стержне. Глубина погружения сваба зависит от технических возможностей геофизической станции, на которой установлен барабан с кабелем, на котором спускается сваб и геофизические приборы. Устье при свабировании открыто для выноса жидкости, но возможность герметизации скважины всегда имееется. Обычно роль герметизирующего устройства играет задвижка на фонтанной арматуре.

Компрессирование. При компрессировании приток в скважину получают вследствие снижения уровня жидкости в трубах за счет ее вытеснения газом. Перед компрессированием в скважину спускают лифт НКТ, в которой установлены на предварительно рассчитанных глубинах пусковые муфты с отверстиями или специальные пусковые клапаны. Подбивают компрессорный агрегат, в затрубное пространство нагнетают инертный газ и снижают уровень жидкости. Когда уровень жидкости в затрубном пространстве достигает уровня размещения пусковой муфты лифта НКТ, происходит резкое падение в затрубном пространстве, а через трубное пространство на поверхности поступает смесь закачиваемого газа со скважинной жидкостью. Давление в затрубе стабилизируется после полного выброса жидкости из трубок, и закачиваемый газ одновременно выходя через пройденную пусковую муфту начинает снова отдавливать жидкость в затрубе до следующей муфты или воронки НКТ.

Тартание- это метод освоения скважины жидкости желонкой, которая спускается на тонком канате с помощью лебедки. Желонка представляет собой трубу длиной 8м, в нижней части которой находится клапан со штоком, открывающимся при упоре на шток. В верхней части желонки находится скоба для установки каната. Данный метод широко распространен при нормализации забоя скважин после проведения ГРП, когда интервал перфорации частично или полностью пересыпан проппантом.

Освоение глубинными насосами. На истощенных месторождениях с просаженным пластовым давлением, где фонтанные выбросы маловероятны, скважины осваиваются откачкой из них жидкости насосами, спускаемыми на проектную глубину в соответствии с предполагаемыми дебитом и динамическим уровнем. При откачке жидкости насосами забойное давление уменьшается, пока не достигнет величины Рзабпл, при котором из продуктивного пласта начинает поступать флюид. Принято, что данный метод эффективен в тех случаях, когда уже известно, что скважине не требуется глубокая, длительная депрессии для очистки призабойной зоны от раствора глушения. Перед спуском насоса скважина обязательно промывается до забоя водой или нефтью.

6. Система поддержания пластового давления

Система ППД представляет собой комплекс технологического обо­рудования, необходимый для подготовки, транспортировки, закачки ра­бочего агента в пласт нефтяного месторождения с целью поддержания пластового давления и достижения максимальных показателей отбора нефти из пласта.

ППД должна обеспечивать:

– необходимые объемы закачки воды в пласт и давления ее нагнетания по скважинам, объектам разработки и месторождению в целом в соответ­ствии с проектными документами;

– подготовку закачиваемой воды до кондиций (по составу, физико-химическим свойствам, содержанию мех примесей, кислорода, микроорга­низмов), удовлетворяющих требованиям проектных документов;

- проведение контроля качества воды системы ППД, замеров приеми­стости скважин, учета закачки воды как по каждой скважине, так и по груп­пам, пластам и объектам разработки, и месторождению в целом:

- герметичность и надежность эксплуатации системы промысловых водоводов, применение замкнутого цикла водоподготовки и заводнения пластов с использованием сточных вод;

- возможность изменения режимов закачки воды в скважины, про­ведения ОПЗ нагнетательных скважин с целью повышения приемистости пластов, охвата пластов воздействием заводнения, регулирование процесса вытеснения нефти к забоям добывающих скважин.

В состав системы ППД входят:

1) источники поставки воды – поверхностные воды из открытых во­доемов (водозабор), сеноманские воды (водозаборные скважины), сточные (пластовая) воды с УПСВ ДНС;

2) специальные водоочистные установки для подготовки воды;

3) система низконапорных водоводов с давлением до 3,0 МПа;

4) кустовые насосные станции по закачке агента (КНС);

5) система высоконапорных водоводов и распределительных блоков (ВРБ) с давлением до 20 МПа;

6) фонд нагнетательных скважин.

Системы разработки нефтяных месторождений с поддержанием пластового давления.

Поддержание пластового давления закачкой воды, кроме повышения нефтеотдачи обеспечивает интенсификацию процесса разработки. Это обусловливается приближением зоны повышенного давления, создаваемого за счет закачки воды в водонагнетательные скважины, к добывающим скважинам.

Местоположение водонагнетательных скважин определяется в основном особенностями геологического строения залежи нефти. Задача сводится к тому, чтобы подобрать такое расположение водонагнетательных скважин, при котором обеспечивается наиболее эффективная связь между зонами нагнетания воды и зонами отбора с равномерным вытеснением нефти водой.

В зависимости от местоположения водонагнетательных скважин в настоящее время в практике разработки нефтяных месторождений нашли применение следующие системы заводнения.

  1   2   3   4


написать администратору сайта