Главная страница
Навигация по странице:

  • Гидравлическое давление глинистых и цементных растворов после остановки циркуляции.

  • Причины возникновения поглощений

  • Поглощения в породах с закрытыми трещинами. Особенность индикаторных кривых. Гидроразрыв и его предупреждение.

  • Оценка эффективности работ по ликвидации поглощений.

  • Способы борьбы с поглощениями в процессе вскрытия зоны поглощения.

  • Газоводонефтепроявления. Их причины. Признаки поступления пластовых флюидов. Классификация и распознавание видов проявлений.

  • Установка цементных мостов. Особенности выбора рецептуры и приготовления тампонажного раствора для установки мостов.

  • Осложнения и аварии при бурении нефтегазовых скважин в условиях многолетней мерзлоты и меры их предупреждения

  • Ответы гэк геология нефти и газа


    Скачать 1.41 Mb.
    НазваниеОтветы гэк геология нефти и газа
    АнкорOtvety_GEK.docx
    Дата15.12.2017
    Размер1.41 Mb.
    Формат файлаdocx
    Имя файлаOtvety_GEK.docx
    ТипДокументы
    #11535
    страница10 из 13
    1   ...   5   6   7   8   9   10   11   12   13

    Схема циркуляционной системы скважин и эпюра распределения давлений в ней.



    http://ok-t.ru/helpiksorg/baza2/114702638314.files/image063.jpg Схема: 1. Долото, 2. Забойный двигатель, 3. УБТ, 4. БТ, 5. Замковое соединение, 6. Квадрат, 7. Вертлюг, 8. Буровой рукав, 9. Стояк, 10. Напорный трубопровод (манифольд), 11. Насос, 12. Всасывающий патрубок, 13. Желобная система, 14. Вибросито.

    1.Линия гидростатического распределения давления.

    2.Линия гидравлического распределения давления в КП.

    3.Линия гидравлического распределения давления в БТ.

    Давление промывочной жидкости на пласт должно быть всегда внутри заштрихованной области между Рпл и Рп.

    Через каждое резьбовое соединение БК жидкость пытается протечь из трубного в затрубное пространство (при циркуляции). Эта тенденция вызвана перепадом давления в трубах и КП. При просачивании происходит разрушение резьбового соединения. При прочих равных условиях органическим недостатком бурения с гидравлическим забойным двигателем, является повышенный перепад давления на каждом резьбовом соединении, так как в забойном двигателе 


    Циркуляционная система служит для подачи бурового раствора от устья скважины к приёмным емкостям, очистки от выбуренной породы и дегазации.

    http://fomen.ru/wp-content/uploads/2009/09/circ-system.gif
    На рисунке представлена упрощённая схема циркуляционной системы ЦС100Э: 1 – трубопровод долива; 2 – растворопровод; 3 – блок очистки; 4 – приемный блок; 5 – шкаф управления электрооборудованием.


    Упрощённая конструкция циркуляционной системы – это желобная система, которая состоит из желоба для движения раствора, настила около желоба для хождения и очистки желобов, перил и основания.

    Желоба могут быть деревянными из досок 40 мм и металлическими из листового железа 3-4 мм. Ширина – 700-800 мм, высота – 400-500 мм. Применяют желоба прямоугольного профиля и полукруглые. С целью уменьшения скорости течения раствора и выпадения из него шлаба в желобах устанавливают перегородки и перепады высотой 15-18 см. На дне желоба в этих местах устанавливают люки с клапанами, через которые удаляют осевшую породу. Общая длина желобной системы зависит от параметров применяемых растворов, условий и технологии бурения, а также от механизмов, используемых для очистки и дегазации растворов. Длина, как правило, может быть в пределах 20-50 м.

    При использовании комплектов механизмов очистки и дегазации раствора (вибросита, пескоотделители, илоотделители, дегазаторы, центрифуги) желобная система применяется только для подачи раствора от скважины к механизму и приёмным емкостям. В этом случае длина желобной системы зависит только от расположения механизмов и емкостей по отношению к скважине.

    В большинстве случаев желобная система монтируется на металлических основаниях по секциям, имеющим длину 8-10 м и высоту до 1 м. Такие секции устанавливают на стальные телескопические стойки, регулирующие высоту установки желобов, это облегчает демонтаж желобной системы зимой. Так, при скоплении и замерзании под желобами выбуренной породы, желоба вместе с основаниями могут быть сняты со стоек. Монтируют желобную систему с уклоном в сторону движения раствора; с устьем скважины желобная система соединяется трубой или желобом меньшего сечения и с большим уклоном для увеличения скорости движения раствора и уменьшения в этом месте выпадения шлаба.

    В современной технологии бурения скважин предъявляют особые требования к буровым растворам, согласно которым оборудование по очистке раствора должно обеспечивать качественную чистку раствора от твёрдой фазы, смешивать и охлождать его, а также удалять из раствора гз, поступивший в него из газонасыщенных пластов во время бурения. В связи с этими требованиями современные буровые установки комплектуются циркуляционными системами с определённым набором унифицированных механизмов – емкостей, устройств по очистке и приготовления буровых растворов.

    Механизмы циркуляционных системы обеспечивают трёхступенчатую очистку бурового раствора. Из скважины раствор поступает на вибросито в первую ступень грубой очистки и собирается в отстойнике ёмкости, где осаждается грубодисперсный песок. Из отстойника раствор проходит в отсек циркуляционной системы и подаётся центробежным шламовым насосом в дегазатор при необходимости дегазации раствора, а затем – в пескоотделитель, где проходит вторую ступень очистки от породы размером до 0,074-0,08 мм. После этого раствор подаётся в илоотделитель – третью ступень очистки, где удаляются частицы породы до 0,03 мм. Песок и ил сбрасываются в ёмкость, откуда подаётся в центрифугу для дополнительного отделения раствора от породы. Очищенный раствор из третьей ступени поступает в приёмные ёмкости – в приёмный блок буровых насосов для подачи его в скважину.

    Оборудование циркуляционных систем скомплектовано заводом в следующие блоки:

    блок очистки раствора;

    промежуточный блок (один или два);

    приёмный блок.

    Базой для комплектовки блоков служат прямоугольные ёмкости, установленные на санных основаниях.

    1. Гидравлическое   давление   глинистых   и   цементных   растворов   после
      остановки циркуляции.





    1. Поглощения. Причины их возникновения.

    Поглощения буровых или тампонажных растворов - вид осложнений, которыйпроявляется уходом жидкости из скважины в пласт горных пород. В отличии от фильтрации, поглощения характерны тем что в ГП поступают все фазы жидкости. А при фильтрации лишь некоторые. На практике поглощения также определяют как суточный уход бурового раствора в пласт в объеме, превышающим естественную убыль за счет фильтрации и со шламом. Для каждого района принята своя норма. Обычно допускается несколько м3 в сутки. Поглощения – наиболее распространенный вид осложнений, особенно в районах Урало-Поволжья восточной и юго-восточной Сибири. Поглощения встречаются в разрезах, в которых имеются обычно трещиноватые ГП, расположены наибольшие деформации пород и их размыв обусловлены тектоническими процессами. Например в Татарии на борьбу с поглощениями ежегодно тратят 14% календарного времени, что превышает затраты времени на мех. бурения. В результате поглощений ухудшаются условия проводки скважины:

    1.Увеличивается прихватоопасность инструмента, т.к. резко снижается скорость восходящего потока промывочной жидкости выше зоны поглощения, если при этом крупные частицы шлама не уходят в пласт, то он скапливаются в стволе, вызывая затяжки и прихват инструмента. Особенно увеличивается вероятность прихвата инструмента оседающим шламом после остановки насосов (циркуляции).

    2. Усиливаются осыпи обвалы в неустойчивых породах. Могут возникать ГНВП из имеющихся в разрезе флюидосодержащих горизонтов. Причина – снижение давления столба жидкости. При наличии двух или более одновременно вскрытых пластов с различными коэф. Ка и Кп между ними могут возникать перетоки, затрудняющие изоляционные работы и последующие цементирование скважины.

    Теряется много времени и материальных средств (инертных наполнителей, тампонажных материалов) на изоляцию, простои и аварии, вызывающие поглощениями.
    Причины возникновения поглощений

    Качественную роль фактора, определяющих величину ухода раствора в зону поглощений можно проследить, рассматривая течения вязкой жидкости в круговом пористом пласте или круговой щели. Формулу для расчета расхода поглощаемой жидкости в пористом круговом пласте получим, решив систему уравнений:

    1.Уравнение движения (В форме Дарси)

    V=K/M*(dP/dr): (1) где V, P, r, M- соответственно скорость течения, текущее давление, радиус пласта, вязкость.

    2. Уравнение сохранения массы (неразрывность)

    V=Q/F (2) где Q, F=2πrh , h – соответственно расход поглощения жидкости, переменная по радиусу площадь, толщина зоны поглощения.

    3. Уравнение состояния

    ρ=const (3) решая эту систему уравнений: 2 и 3 в 1 получим:

    Q=(K/M)*2πrH (dP/dr)

    Q= (2πHK(Pс-Pпл))/Mln (rk/rc) (4) формула Дюпии

    Аналогичную формулу(4) Буссенеско можно получить и для m круговых трещин (щелей) одинаково раскрытых и равно отстоящих друг от друга.

    Q= [(πδ3(Pс-Pпл))/6Mln (rk/rc) ] *m (5)

    δ- раскрытие (высота) щели;

    m- число трещин (щелей);

    M- эффективная вязкость.

    Ясно, что для уменьшения расхода поглощаемой жидкости по формуле (4) и (5) надо увеличивать параметры в знаменатели и уменьшать их в числителе.

    Согласно (4) и (5)

    Q=£(H(или m), Pпл, rk, Pc, rc, M, K, (илиδ)) (6)

    Параметры, входящие в функцию (6) по происхождению на момент вскрытия зоны поглощения можно условно разделить на 3 группы.

    1.группа – геологические параметры;

    2.группа – технологические параметры;

    3.группа – смешенные.

    Это деление условное, поскольку в ходе эксплуатации, т.е. технологического воздействия (отбор жидкости, заводнения и т.д.) на залежь изменяется также Pпл, rk


    1. Поглощения     в     породах     с     закрытыми     трещинами.     Особенность
      индикаторных кривых. Гидроразрыв и его предупреждение.


    Особенность
    индикаторных кривых.

    http://ok-t.ru/helpiksorg/baza2/114702638314.files/image093.gif Дальше будем рассматривать прямую 2.

    Приближенно индикаторную кривую для пород с искусственно открываемыми закрытыми трещинами может быть описана следующей формулой : Рс = Рб +Рпл+ 1/А*Q+BQ2 (1)

    Для пород с естественно открытыми трещинами индикаторная кривая является частным случаем формулы (1)

    Рс-Рпл= ΔР=1/А*Q=А*ΔР

    Таким образом, в породах с открытыми трещинами поглощение начнется при любых значениях репрессии, а в породах с закрытыми трещинами – только после создания в скважине давления равное давлению гидроразрыва Рс*. Главная мера борьбы с поглощениями в породах с закрытыми трещинами (глины, соли) – не допускать гидроразрыва.


    1. Оценка эффективности работ по ликвидации поглощений.

    Эффективность работ по изоляции характеризуется приемистостью (А) зоны поглощения, которую удается достичь в ходе изоляционных работ. Если при этом полученная приемистость А оказывается ниже некоторого технологически допустимого значения приемистости Аq, характеризующаяся для каждого района, то изоляционные работы можно считать успешными. Таким образом условии изоляции можно записать в виде А≤Аq (1) А=Q/Рс- Р* (2) Для пород с искусственно открываемыми трещинами Р* = Рб+Рпл+Рр (3) где Рб-боковое давление горной породы, Рр - предел прочности на разрыв г.п. В частном случаи Рб и Рр = 0 для пород с естественными открытыми трещинами А= Q/Pc - Рпл (4) , если не допустить малейшего поглощения, то Q=0 и А→0,

    тогда Рс<Р* (5) Для зоны с открытыми трещинами формула (5) заменяется Рс=Рпл= Рпогл (6). Если давление в скважине определяется гидростатикой Рс = ρqL то (5 и 6) в привычных обозначениях примет вид: ρо≤Кп (7) и ρо= Ка=Кп (8). На практике трудно определить давление поглощения Р* , поэтому в ряде районов, например в Татарии оценка эффективности изоляционных работ проводят не по индексу давления поглощения Кп а по дополнительной приемистости Аq. В Татарии допустимые приемистости по тех. воде принято Аq≤ 4 м3/ч*МПа. Значение Аq свое для каждого района и различных поглощаемых жидкостей. Для воды оно принимается обычно более, а при растворе с наполнителем Аq берется меньше. Согласно 2 и 4 А=f (Q; Рс) (9). Т.е все способы борьбы с поглощениями основаны на воздействии на две управляемые величины (2 и 4) , т.е. на Q и Рс.

    http://ok-t.ru/helpiksorg/baza2/114702638314.files/image133.gif


    1. Способы борьбы с поглощениями в процессе вскрытия зоны поглощения.

    Традиционные способы предупреждения поглощений основаны на уменьшении перепадов давления на поглощающий пласт или изменении а/т) фильтрующейся жидкости. Если вместо снижения перепада давления на пласт увеличить вязкость путем добавления закупоривающих материалов, бентонита или других веществ, интенсивность поглощения будет изменяться обратно пропорционально увеличению вязкости, как это следует из формулы (2.86). Практически, если регулировать параметры раствора, вязкость можно изменять лишь в сравнительно узких пределах. Предотвращение поглощений путем перехода на промывку раствором с повышенной вязкостью возможно только при условии разработки научно обоснованных требований к этим жидкостям, учитывающих особенности течения их в пласте. Совершенствование приемов предупреждения поглощений, основанных на снижении перепадов давления на поглощающие пласты, неразрывно связано с глубоким изучением и разработкой методов проводки скважин при равновесии в системе скважина - пласт. Буровой раствор, проникая в поглощающий пласт на определенную глубину и загустевая в каналах поглощения, создает дополнительное препятствие на пути движения буровому раствору из ствола скважины в пласт. Свойство раствора создавать сопротивление движению жидкости внутри пласта используют при проведении профилактических мероприятий с целью предотвращения поглощений. Сила такого сопротивления зависит от структурно-механических свойств раствора, размеров и формы каналов, а также от глубины проникновения раствора в пласт.

    http://ok-t.ru/helpiksorg/baza2/114702638314.files/image135.jpg Чтобы сформулировать требования к реологическим свойствам буровых растворов при прохождении поглощающих пластов, рассмотрим кривые (рис. 2.16), отражающие зависимость напряжения сдвига и скорость деформации de/df для некоторых моделей неньютоновской жидкости. Прямая 1 соответствует модели вязкопластичной среды, для которой характерно предельное напряжение сдвига т0. Кривая 2 характеризует поведение псевдопластических жидкостей, у которых с ростом скорости сдвига замедляется темп роста напряжения, и кривые выполаживаются. Прямая 3 отражает реологические свойства вязкой жидкости (ньютоновской). Кривая 4 характеризует поведение вязкоупрутих и дилатант-ных жидкостей, у которых напряжение сдвига резко увеличивается с ростом скорости деформации. К вязкоупругим жидкостям, в частности, относятся слабые растворы некоторых полимеров (окись полиэтилена, гуаровая смола, поли-акриламид и др.) в воде, которые обнаруживают свойство резко снижать (в 2-3 раза) гидродинамические сопротивления при течении жидкостей с большими числами Рейнольдса (эффект Томса). В то же время вязкость этих жидкостей при движении их по поглощающим каналам будет высокой вследствие высоких скоростей сдвига в каналах. Бурение с промывкой аэрированными буровыми растворами является одним из радикальных мероприятий в комплексе мер и способов, предназначенных для предупреждения и ликвидации поглощений при бурении глубоких скважин. Аэрация бурового раствора снижает гидростатическое давление, способствует тем самым возвращению его в достаточном количестве на поверхность и соответственно нормальной очистке ствола скважины, а также отбору представительных проб проходимых пород и пластовых флюидов. Технико-экономические показатели при бурении скважин с промывкой забоя аэрированным раствором выше по сравнению с показателями, когда в качестве бурового раствора используется вода или другие промывочные жидкости. Значительно улучшается также качество вскрытия продуктивных пластов, особенно на месторождениях, где эти пласты имеют аномально низкие давления.

    Эффективным мероприятием по предотвращению поглощения бурового раствора является введение в циркулирующий буровой раствор наполнителей. Цель их применения состоит в создании тампонов в каналах поглощения. Эти тампоны служат основой для отложения фильтрационной (глинистой) корки и изоляции поглощающих пластов. В.Ф. Роджерс считает, что закупоривающим агентом может быть практически любой материал, который состоит из частиц достаточно малых размеров и при вводе которых в буровой раствор он может прокачиваться буровыми насосами. В США для закупоривания поглощающих каналов применяют более ста типов наполнителей и их комбинаций. В качестве закупоривающих агентов используют древесную стружку или мочало, рыбью чешую, сено, резиновые отходы, листочки гуттаперчи, хлопок, коробочки хлопчатника, волокна сахарного тростника, ореховую скорлупу, гранулированные пластмассы, перлит, керамзит, текстильные волокна, битум, слюду, асбест, изрезанную бумагу, мох, изрезанную коноплю, хлопья целлюлозы, кожу, пшеничные отруби, бобы, горох, рис, куриные перья, комки глины, губку, кокс, камень и др. Эти материалы можно применять отдельно и в комбинациях, изготовленных промышленностью или составляемых перед использованием. Определить в лаборатории пригодность каждого закупоривающего материала весьма трудно из-за незнания размера отверстий, которые должны быть закупорены.

    В зарубежной практике особое внимание уделяется обеспечению "плотной" упаковки наполнителей. Придерживаются мнения Фернаса, согласно которому наиболее плотная упаковка частиц отвечает условию распределения их по размерам по закону геометрической прогрессии; при ликвидации поглощения наибольший эффект может быть получен при максимально уплотненной пробке, особенно в случае мгновенного ухода бурового раствора.

    Наполнители по качественной характеристике подразделяются на волокнистые, пластинчатые и зернистые. Волокнистые материалы имеют растительное, животное, минеральное происхождение. Сюда относятся и синтетические материалы. Тип и размер волокна значительно влияют на качество работ. Важна устойчивость волокон при циркуляции их в буровом растворе. Материалы дают хорошие результаты при закупоривании песчаных и гравийных пластов с зернами диаметром до 25 мм, а также при закупоривании трещин в крупнозернистых (до 3 мм) и мелкозернистых (до 0,5 мм) породах.

    Пластинчатые материалы пригодны для закупорки пластов крупнозернистого гравия и трещин размером до 2,5 мм. К ним относят: целлофан, слюду, шелуху, хлопковые семена и т.д.

    Зернистые материалы: перлит, измельченная резина, кусочки пластмассы, ореховая скорлупа и др. Большинство из них эффективно закупоривают пласты гравия с зернами диаметром до 25 мм. Перлит дает хорошие результаты в гравийных пластах с диаметром зерен до 9-12 мм. Ореховая скорлупа размером 2,5 мм и менее закупоривает трещины размером до 3 мм, а более крупная (до 5 мм) и измельченная резина закупоривают трещины размером до 6 мм, т.е. ими можно закупорить трещин в 2 раза больше, чем при использовании волокнистых или пластинчатых материалов.

    При отсутствии данных о размерах зерен и трещин поглощающего горизонта применяют смеси волокнистых с пластинчатыми или зернистыми материалами, целлофана со слюдой, волокнистых с чешуйчатыми и зернистыми материалами, а также при смешивании зернистых материалов: перлита с резиной или ореховой скорлупой. Лучшей смесью для ликвидации поглощения при низких давлениях является высококоллоидный глинистый раствор с добавками волокнистых материалов и листочков слюды. Волокнистые материалы, откладываясь на стенке скважины, образуют сетку. Листочки слюды укрепляют эту сетку и закупоривают более крупные каналы в породе, а поверх всего этого образуется тонкая и плотная глинистая корка.


    1. Газоводонефтепроявления. Их причины. Признаки поступления пластовых
      флюидов. Классификация и распознавание видов проявлений.


    При поглощении жидкость (промывочная или тампонажная) течет из скважины в пласт, а при проявлении наоборот – из пласта в скважину. Причины поступления: 1) поступление в скважину в месте с выбуренной породы флюид содержащих пластов. В этом случае не обязательно выше и ниже давление в скважине по сравеннию с пластовым; 2) если давление в скважине ниже пластового, т.е имеет место дипрессия на пласт основные причины возникновения дипрессии т.е снижения давления на пласт в скважине следующие: 1) не долив скважины промывочной жидкостью при подъёме инструмента. Необходимы обязательно устройство для автодолива в скважину; 2) снижения плотности промывочной жидкости из за её вспенивания (газирования) при соприкосновение жидкости с воздухом на поверхности в желобной системе, а также из за обработки п.ж ПАВ. Необходима дэгазация (механическая, химическая); 3) бурение скважины в несовместимых условиях. На схеме два пласта. Для первого пласта характерно Ка1 и Кп1; для второго Ка2 и Кп2. первый пласт должны бурить на растворе ρ0,1 http://ok-t.ru/helpiksorg/baza2/114702638314.files/image147.gif (между Ка1 и Кп1), второй пласт ρ0,2 (Рис.)

    Невозможно вскрывать второй пласт на растворе с плотностью для первого пласта, так как будет его поглощения в во втором пласте; 4) резких колебаний гидродинамического давления при остановки насоса, СПО и др. работах, усугубляемых повышением статического напряжения сдвига и наличие сальников на колонне;

    5) заниженная плотность п.ж принятой в техническом проекте из за плохого знания фактического распределения пластового давления (Ка), т.е геология района. Эти причины больше относятся к разведочным скважинам; 6) низкий уровень оперативного уточнения пластовых давлений путем прогнозирования их в ходе углубления скважины. Не использования методов прогнозирования d-экспоненты, σ (сигма)-экспонента и.т.д; 7) выпадения утяжелителя из бурового раствора и снижения гидравлического давления. Признаки поступления пластового флюида являются: 1) повышения уровня циркулирующей жидкости в приемной емкости насоса. Нужен уровнемер; 2) из раствора, выходящего из скважины на устье выделяется газ, наблюдается кипение раствора; 3) после остановки циркуляции раствор продолжает вытекать из скважины (скважина переливает); 4) резко поднимается давление при неожиданном вскрытие пласта с АВПД. При поступление нефти из пластов её пленка остается на стенках желобов или течет поверх раствора в желобах. При поступления пластовой воды, изменяются свойства п.ж. Плотность её обычно падает, вязкость может снизится, а может и увеличиться (после поступления соленой воды). Водоотдача обычно увеличивается, изменяется рН, электрическое сопротивление обычно снижается. 

    Классификация поступления флюидов. Она производится по сложности мероприятий необходимых для их ликвидаций. Подразделяются на три группы: 1) проявление- неопасное поступление пластовых флюидов, не нарушающие процесс бурения и принятую технологию работ; 2) выброс – поступление флюидов которые можно ликвидировать только путем специального целенаправленного изменения технологии бурения имеющимися на буровой средствами и оборудованием; 3) фонтан – вступления флюида, ликвидация которого требует применения дополнительных средств и оборудования (кроме имеющихся на БУ) и которая связана с возникновением в системе скважина-пласт давлений, угрожающих целостности о.к. , устьевого оборудования и пластов в незакрепленной части скважины.


    1. Установка цементных мостов. Особенности выбора рецептуры и приготовления тампонажного раствора для установки мостов.

    Одна из серьезных разновидностей технологии процесса цементирования — установка цементных мостов различного назначения. Повышение качества цементных мостов и эффективности их работы — неотъемлемая часть совершенствования процессов бурения, заканчивания и эксплуатации скважин. Качеством мостов, их долговечностью определяется также надежность охраны недр окружающей среды. Вместе с тем промысловые данные свидетельствуют, что часто отмечаются случаи установки низкопрочных и негерметичных мостов, преждевременного схватывания цементного раствора, прихвата колонных труб и т.д. Эти осложнения обусловлены не только и не столько свойствами применяемых тампонажных материалов, сколько спецификой самих работ при установке мостов.

    В глубоких высокотемпературных скважинах при проведении указанных работ довольно часто происходят аварии, связанные с интенсивным загустеванием и схватыванием смеси глинистого и цементного растворов. В некоторых случаях мосты оказываются негерметичными или недостаточно прочными. Успешная установка мостов зависит от многих природных и технических факторов, обусловливающих особенности формирования цементного камня, а также контакт и "сцепление" его с горными породами и металлом труб. Поэтому оценка несущей способности моста как инженерного сооружения и изучение условий, существующих в скважине, обязательны при проведении этих работ.

    Цель установки мостов - получение устойчивого водогазонефтенепроницаемого стакана цементного камня определенной прочности для перехода на вышележащий горизонт, забуривания нового ствола, укрепления неустойчивой и кавернозной части ствола скважины, опробования горизонта с помощью испытателя пластов, капитального ремонта и консервации или ликвидации скважин.

    По характеру действующих нагрузок можно выделить две категории мостов:

    1) испытывающих давление жидкости или газа и 2) испытывающих нагрузку от веса инструмента во время забуривания второго ствола, применения испытателя пластов или в других случаях (мосты, этой категории, должны помимо газоводонепроницаемости обладать весьма высокой механической прочностью).

    Анализ промысловых данных показывает, что на мосты могут создаваться давления до 85 МПа, осевые нагрузки до 2100 кН и возникают напряжения сдвига на 1 м длины моста до 30 МПа. Такие значительные нагрузки возникают при опробовании скважин с помощью испытателей пластов и при других видах работ.

    Несущая способность цементных мостов в значительной мере зависит от их высоты, наличия (или отсутствия) и состояния глинистой корки или остатков бурового раствора на колонне. При удалении рыхлой части глинистой корки напряжение сдвига составляет 0,15-0,2 МПа. В этом случае даже при возникновении максимальных нагрузок достаточна высота моста 18-25 м. Наличие на стенках колонны слоя бурового (глинистого) раствора толщиной 1-2 мм приводит к уменьшению напряжения сдвига и к увеличению необходимой высоты до180-250 м. В связи с этим высоту моста следует рассчитывать по формуле Нм ≥ Но – Qм/пDc [τм] (1) где Н0 - глубина установки нижней части моста; QM - осевая нагрузка на мост, обусловливаемая перепадом давления и разгрузкой колонны труб или испытателя пластов; Dс - диаметр скважины; [τм] - удельная несущая способность моста, значения которой определяются как адгезионными свойствами тампонажного материала, так и способом установки моста. Герметичность моста также зависит от его высоты и состояния поверхности контакта, так как давление, при котором происходит прорыв воды, прямо пропорционально длине и обратно пропорционально толщине корки. При наличии между обсадной колонной и цементным камнем глинистой корки с напряжением сдвига 6,8-4,6 МПа, толщиной 3-12 мм градиент давления прорыва воды составляет соответственно 1,8 и 0,6 МПа на 1 м. При отсутствии корки прорыв воды происходит при градиенте давления более 7,0 МПа на 1 м.

    Следовательно, герметичность моста в значительной мере зависит также от условий и способа его установки. В связи с этим высоту цементного моста следует также определять и из выражения

    Нм ≥ Но – Рм/[∆р] (2) где Рм - максимальная величина перепада давлений, действующего на мост при его эксплуатации; [∆р] - допустимый градиент давления прорыва флюида по зоне контакта моста со стенкой скважины; эту величину также определяют в основном в зависимости от способа установки моста, от применяемых тампонажных материалов. Из значений высоты цементных мостов, определенных по формулам (1) и (2), выбирают большее.

    Установка моста имеет много общего с процессом цементирования колонн и обладает особенностями, которые сводятся к следующему:

    1) используется малое количество тампонажных материалов;

    2) нижняя часть заливочных труб ничем не оборудуется, стоп-кольцо не устанавливается;

    3) не применяются резиновые разделительные пробки;

    4) во многих случаях производится обратная промывка скважин для "срезки" кровли моста;

    5) мост ничем не ограничен снизу и может растекаться под действием разности плотностей цементного и бурового растворов.

    Установка моста - простая по замыслу и способу проведения операция, которая в глубоких скважинах существенно осложняется под действием таких факторов, как температура, давление, газоводонефтепроявления и др. Немаловажное значение имеют также длина, диаметр и конфигурация заливочных труб, реологические свойства цементного и бурового растворов, чистота ствола скважины и режимы движения нисходящего и восходящего потоков. На установку моста в не обсаженной части скважины значительное влияние оказывает кавернозность ствола.

    Цементные мосты должны быть достаточно прочными. Практика работ показывает, что если при испытании на прочность мост не разрушается при создании на него удельной осевой нагрузки 3,0-6,0 МПа и одновременной промывки, то его прочностные свойства удовлетворяют условиям как забуривания нового ствола, так и нагружения от веса колонны труб или испытателя пластов.

    При установке мостов для забуривания нового ствола к ним предъявляется дополнительное требование по высоте. Это обусловлено тем, что прочность верхней части (Н1) моста должна обеспечить возможность забуривания нового ствола с допустимой интенсивностью искривления, а нижняя часть (Н0) - надежную изоляцию старого ствола. Нм=Н1+Но = (2Dс* Rc )0,5+ Но(3)

    где Rc - радиус искривления ствола.

    Анализ имеющихся данных показывает, что получение надежных мостов в глубоких скважинах зависит от комплекса одновременно действующих факторов, которые могут быть разделены на три группы.

    Первая группа - природные факторы: температура, давление и геологические условия (кавернозность, трещиноватость, действие агрессивных вод, водо- и газопроявления и поглощения).

    Вторая группа - технологические факторы: скорость движения потоков цементного и бурового растворов в трубах и кольцевом пространстве, реологические свойства растворов, химический и минералогический состав вяжущего материала, физико-механические свойства цементного раствора и камня, контракционный эффект тампонажного цемента, сжимаемость бурового раствора, неоднородность плотностей, коагуляция бурового раствора при смешении его с цементным (образование высоковязких паст), величина кольцевого зазора и эксцентричность расположения труб в скважине, время контакта буферной жидкости и цементного раствора с глинистой коркой.

    Третья группа - субъективные факторы: использование неприемлемых для данных условий тампонажных материалов; неправильный подбор рецептуры раствора в лаборатории; недостаточная подготовка ствола скважины и использование бурового раствора с высокими значениями вязкости, СНС и водоотдачи; ошибки при определении количества продавочной жидкости, места расположения заливочного инструмента, дозировки реагентов для затворения цементного раствора на скважине; применение недостаточного числа цементировочных агрегатов; применение недостаточного количества цемента; низкая степень организации процесса установки моста.

    Увеличение температуры и давления способствует интенсивному ускорению всех химических реакций, вызывая быстрое загустевание (потерю прокачиваемости) и схватывание тампонажных растворов, которые после кратковременных остановок циркуляции иногда невозможно продавить.

    До настоящего времени основной способ установки цементных мостов - закачивание в скважину цементного раствора в проектный интервал глубин по колонне труб, спущенной до уровня нижней отметки моста с последующим подъемом этой колонны выше зоны цементирования. Как правило, работы проводят без разделительных пробок и средств контроля за их движением. Процесс контролируют по объему продавочной жидкости, рассчитываемому из условия равенства уровней цементного раствора в колонне труб и кольцевом пространстве, а объем цементного раствора принимают равным объему скважины в интервале установки моста. Эффективность способа низка.

    Прежде всего следует отметить, что вяжущие материалы, применяемые для цементирования обсадных колонн, пригодны для установки прочных и герметичных мостов. Некачественная установка мостов или вообще их отсутствие, преждевременное схватывание раствора вяжущих веществ и другие факторы в определенной степени обусловлены неверным подбором рецептуры растворов вяжущих веществ по срокам загустевания (схватывания) или отклонениями от подобранной в лаборатории рецептуры, допущенными при приготовлении раствора вяжущих.

    Установлено, что для уменьшения вероятности возникновения осложнений сроки схватывания, а при высоких температурах и давлениях сроки загустевания должны превышать продолжительность работ по установке мостов не менее чем на 25 %. В ряде случаев при подборе рецептур растворов вяжущих не учитывают специфики работ по установке мостов, заключающихся в остановке циркуляции для подъема колонны заливочных труб и герметизации устья.

    В условиях высоких температур и давления сопротивление сдвигу цементного раствора даже после кратковременных остановок (10-20 мин) циркуляции может резко возрасти. Поэтому циркуляцию восстановить не удается и в большинстве случаев колонна заливочных труб оказывается прихваченной. Вследствие этого при подборе рецептуры цементного раствора необходимо исследовать динамику его загустевания на консистометре (КЦ) по программе, имитирующей процесс установки моста. Время загустевания цементного раствора Тзаг соответствовать условию

    Тзаг>Т1+Т2+Т3+1,5(Т4+Т5+Т6)+1,2Т7 где T1, Т2, T3 - затраты времени соответственно на приготовление, закачивание и продавливание цементного раствора в скважину; Т4, Т5, Т6 - затраты времени на подъем колонны заливочных труб до места срезки моста, на герметизацию устья и производство подготовительных работ по срезке моста; Тт - затраты времени на срезку моста.

    По аналогичной программе необходимо исследовать смеси цементного раствора с буровым в соотношении 3:1,1:1 и 1:3 при установке цементных мостов в скважинах с высокими температурой и давлением. Успешность установки цементного моста в значительной степени зависит от точного соблюдения подобранной в лаборатории рецептуры при приготовлении цементного раствора. Здесь главные условия - выдерживание подобранного содержания химических реагентов и.жидкости затворения и водоцементного отношения. Для получения возможно более однородного тампонажного раствора его следует приготовлять с использованием осреднительной емкости.

    1. Осложнения и аварии при бурении нефтегазовых скважин в условиях многолетней мерзлоты и меры их предупреждения.

    При бурении в интервалах распространения ММП в результате совместного физико-химического воздействия и эрозии на стенки скважины сцементированные льдом песчано-глинистые отложения разрушаются и легко размываются потоком бурового раствора. Это приводит к интенсивному кавернообразованию и связанным с ним обвалам и осыпям горных пород.

    Наиболее интенсивно разрушаются породы с низким показателем льдистости и слабоуплотненные породы. Теплоемкость таких пород невысокая, и поэтому их разрушение происходит существенно быстрее, чем пород с высокой льдистостью.

    Среди мерзлых пород встречаются пропласткн талых пород, многие из которых склонны к поглощениям бурового раствора при давлениях, незначительно превышающих гидростатическое давление столба воды в скважине. Поглощения в такие пласты бывают весьма интенсивные и требуют специальных мероприятий для их предупреждения или ликвидации

    В разрезах ММП обычно наиболее неустойчивы породы четвертичного возраста в интервале 0 — 200 м. При традиционной технологии бурения фактический объем ствола в них может превосходить номинальный в 3 — 4 раза. В результате сильного кавернообразования. которое сопровождается появлением уступов, сползанием шлама и обвалами пород кондукторы во многих скважинах не были спущены до проектной глубины.

    В результате разрушения ММП в ряде случаев наблюдалось проседание кондуктора и направления, а иногда вокруг устья скважины образовывались целые кратеры, не позволяющие вести буровые работы.

    В интервале распространения ММП трудно обеспечить цементирование и крепление ствола вследствие создания застойных зон бурового раствора в больших кавернах, откуда его невозможно вытеснить тампонажным раствором. Цементирование зачастую одностороннее, а цементное кольцо несплошное. Это порождает благоприятные условия для меж- пластовых перетоков и образования грифонов, д\я смятия колонн при обратном промерзании пород в случае длительных "прослоев" скважины.

    Процессы разрушения ММП достаточно сложные и мало изученные. 1 Циркулирующий в скважине буровой раствор термо- и гидродинамически взаимодействует как с горной породой, так и со льдом, причем это взаимодействие может существенно усиливаться физико-химическими процессами (например, растворением», которые не прекращаются даже при отрицательных температурах.

    В настоящее время можно считать доказанным наличие осмотических процессов в системе порода (лед) - корка на стенке скважины — промывочная жидкость в стволе скважины. Эти процессы самопроизвольные и направлены в сторону, противоположную градиенту потенциала (температуры, давления, концентрации), те. стремятся к выравниванию концентраций, температур, давлений. Роль полупроницаемой перегородки может выполнять как фильтрационная корка, так и прискважинный гонкий слой самой породы. А в составе мерзлой породы кроме льда как цементирующего ее вещества может находиться незамерзающая поровая вода с различной степенью минерализации. Количество незамерзающей воды в ММГ1 зависит от температуры, вещественного состава, солености и может быть оценено по эмпирической формуле

    w= аТь.

    где и' — содержание незамерзающей воды. % от массы образца породы: а, Ь — эмпирические коэффициенты, зависящие от состава породы:

    1па = 0.2618 + 0.55191nS;

    1п( — Ъ) = 0.3711 + 0.264S:

    S — удельная поверхность породы. ма/п Г — температура породы, 'С.

    Из-за наличия в открытом стволе скважины промывочного бурового раствора, а в ММП - поровой жидкости с определенной степенью минерализации наступает- процесс самопроизвольного выравнивания концентраций иод действием осмотического давления. В результате этого может происходить разрушение мерзлой породы. Если буровой раствор будет иметь повышенную по сравнению с поровой водой концентрацию какой-нибудь растворенной соли, то на границе лед - жидкость начнутся фазовые превращения, связанные с понижением температуры плавления льда, т.е. начнется процесс его разрушения. А так как устойчивость стенки скважины зависит в основном ото льда, как цементирующего породу вещества, то в этих условиях устойчивость ММП, с,латающих стенку скважины, будет потеряна, что может явиться причиной осыпей, обвалов, образования каверн и шламовых пробок, посадок и затяжек при спускоподъемных операциях, остановок спускаемых в скважину обсадных колонн, поглощений буровых промывочных и тампонажных растворов.

    Если степени минерализации бурового раствора и поровой воды ММП одинаковы, то система скважина - порода будет находиться в изотоническом равновесии, и разрушение ММП под физико-химическим воздействием маловероятно.

    С увеличением степени минерализации промывочного агента возникают условия, при которых поровая вода с меньшей минерализацией будет перемещаться из породы в скважину. Из-за потерь иммобилизованной воды механическая прочность льда будет уменьшаться, лед может разрушиться, что приведет к образованию каверны в стволе бурящейся скважины. Этот процесс интенсифицируется эрозионным воздействием циркулирующего промывочного агента.

    Разрушение льда соленой промывочной жидкостью отмечено в работах многих исследователей. Эксперименты, проведенные в Ленинградском горном институте, показали, что с увеличением концентрации соли в омывающей лед жидкости разрушение льда интенсифицируется. Так. при содержании в циркулирующей воде 23 и 100 кг/м ‘ NaCl интенсивность разрушения льда при температуре минус 1 "С составляла соответственно 0,0163 и 0,0882 кг/ч.

    На процесс разрушения льда оказывает влияние также длите,'льность воздействия соленой промывочной жидкости. Так, при воздействии на лед 3%-ным раствором NaCl потеря массы образца льда с температурой минус 1 ’С составим: через 0,5 ч 0,62 п через 1.0 ч 0.96 г: через 1,5 ч 1,96 г.

    По мере растепления прискважинной зоны ММП освобождается часть ее норового пространства, куда также может фильтроваться промывочная жидкость или ее дисперсионная среда. Этот процесс может оказаться еще одним физико=имическим фактором, способствующим разрушению ММП. Он может сопровождаться осмотическим перетоком жидкости из скважин в породу, если концентрация какой-нибудь растворимой соли в жидкости ММП больше, чем в жидкости. заполняющей ствол скважины.

    Следовательно, чтобы свести к минимуму отрицательное влияние физико-химических процессов на состояние ствола бурящейся в ММП скважины, необходимо, в первую очередь, обеспечить равновесную концентрацию на стенке скважины компонентов бурового промывочного раствора и внутрипо- ровой жидкости в ММП.

    К сожалению, это требование не всегда выполнимо на практике. Поэтому чаще прибегают к защите цементирующего ММП льда от физико-химического воздействия буровым раствором пленками вязких жидкостей, которые покрывают не только обнаженные скважиной поверхности льда, но и частично прилегающее к скважине внутрипоровое пространство. разрывая тем самым непосредственный контакт минерализованной жидкости со ,льдом.

    Как указывают АВ Марамзин и А А Рязанов, при переходе от промывки скважин соленой водой к промывке более вязким глинистым раствором интенсивность разрушения льда уменьшилась в 3,5 — 4 раза при одинаковой концентрации в них NaCI. Она снижалась еще больше, когда буровой раствор обрабатывали защитными коллоидами (КМЦ, ССБ|. Подтверждена также положительная роль добавок к буровому раствору высококоллоидного бентонитового глннопорош- ка и гипана.

    Таким образом, для предупреждения кавернообразования, разрушения устьевой зоны, осыпей и обвалов при бурении скважин в ММП. буровой промывочный раствор должен отвечать следующим основным требованиям:

    обладать низким показателем фильтрации:

    содержать количество солей, равновесное с жидкостью в ММП:

    обладать способностью создавать на поверхности льда в ММП плотную, непроницаемую пленку:

    обладать низкой эрозионной способностью; иметь низкую удельную теплоемкость;

    образовывать фильтрат, не создающий с жидкостью породы истинных растворов;

    быть гидрофобным к поверхности льда.
    1   ...   5   6   7   8   9   10   11   12   13


    написать администратору сайта