Главная страница

Патофизиология шока


Скачать 122.07 Kb.
НазваниеПатофизиология шока
Дата29.05.2018
Размер122.07 Kb.
Формат файлаdocx
Имя файлаpatfiz 2 modul.docx
ТипГлава
#45329
страница5 из 9
1   2   3   4   5   6   7   8   9
острое воспаление характеризуется определенной последовательностью сосудистых изменений, проявляющихся развитием спазма сосудов, артериальной, венозной гиперемии и стаза. Спазм сосудов — реакция кратковременная. Спазм может длиться от нескольких секунд (при легком повреждении ткани) и до нескольких минут (при тяжелом повреждении). Однако такая реакция сосудов в очаге воспаления не является строго обязательной и не проявляется в ряде случаев при повреждении паренхиматозных органов. Возникновение спазма сосудов в зоне воспаления обусловлено сокращением гладкомышечных элементов сосудов в ответ на их повреждение, а также возбуждением вазоконстрикторов под влиянием сильного быстродействующего альтерирующего фактора. Кратковременность этой стадии определяется быстрой инактивацией вазоконстрикторных медиаторов — норадреналина, адреналина под влиянием моноаминоксидазы. Возможно, что в механизмах спазма сосудов в зоне воспаления принимает участие серотонин, освобождающийся в большом количестве при повреждении тканей из тромбоцитов и лаброцитов. Внешним проявлением спазма сосудов является побледнение участка ткани, где развивается воспалительный процесс. Стадия артериальной гиперемии характеризуется умеренным расширением мелких артерий, артериол, капилляров, венул, а также функционированием резервных капилляров (феномен новообразования капилляров). Расширение сосудов вызывает увеличение кровенаполнения ткани, усиление лимфообразования и лимфооттока. Приток крови может несколько превышать ее отток, что способству

161

ет возрастанию гидродинамического давления в сосудах, увеличению линейной и объемной скорости движения крови, снижению артериовенозной разницы по кислороду. На этой стадии формируются такие внешние признаки воспаления, как покраснение и повышение температуры. Усиление оксигенации ткани активирует обмен веществ в клетках, способствует появлению активных форм кислорода, которые, с одной стороны, могут оказывать повреждающее действие на интактные клетки и соединительную ткань, а с другой, — являются факторами защиты организма от инфекционных патогенных агентов, а в дальнейшем оказывают стимулирующее влияние на процессы пролиферации в зоне воспаления. По мере развития артериальной гиперемии к очагу воспаления усиливается приток гуморальных факторов защиты — комплемента, пропердина, фибронектина, интерферона, церулоплазмина и др. Интенсивный кровоток обеспечивает вымывание токсических продуктов обмена, факторов патогенности, продуцируемых микроорганизмами, биологически активных веществ. В ряде случаев, при снижении реактивности организма, за счет интенсивного кровотока могут произойти диссеминация инфекции и развитие септического состояния. Артериальная гиперемия может продолжаться в течение нескольких часов и суток. Она наиболее выражена по периферии зоны альтерации. В основе развития артериальной гиперемии лежат несколько механизмов: 1. Нейрогенный — за счет активации аксон-рефлекса, усиления холинергических и гистаминергических нервных влияний на сосудистую стенку, а также повреждения сенсорных пептидергических нервных волокон, участвующих в ноцицепции, и выделении сенсорных нейропептидов — субстанции Р, пептида гена, родственного кальцитонину, пептида протеинового гена. Указанные нейропептиды обладают выраженным сосудорасширяющим действием. 2. Нейропаралитический — за счет пареза симпатических вазоконстрикторов и снижения чувствительности адренорецепторов сосудов. 3. Миопаралитический — за счет снижения базального тонуса сосудов под влиянием умеренных концентраций вазоактивных соединений (гистамин, кинины, лейкотриены и др.), а также за счет Н- и К-гиперионии. По мере нарастания воспалительного процесса артериальная гиперемия сменяется венозной. Венозная гиперемия характеризуется дальнейшим расширением сосудов, снижением скорости кровотока, полнокровием ткани, феноменом краевого стояния лейкоцитов и их эмиграцией, нарушением реологических свойств крови, усилением процессов экссудации. Факторы, влияющие на переход артериальной гиперемии в венозную, можно разделить на две группы: внутрисосудистые и внесосудистые. К внутрисосудистым факторам, вызывающим развитие венозной гиперемии, относятся набухание эндотелиальных клеток, краевое стояние лейкоцитов, активация системы гемостаза, сладжирование эритроцитов, сгущение крови, повышение ее вязкости, образование микротромбов. Из внесосудистых факторов наибольшее значение имеют отек ткани и сдавление венул, мелких вен, лимфатических сосудов экссудатом. Усиливают венозную гиперемию избыточное накопление в очаге воспаления медиаторов с сосудорас

162

ширяющим действием, ферментов лизосом и ионов водорода, а также нарушение околокапиллярного соединительнотканного скелета и десмосом в зоне первичной и вторичной альтерации. Внешними проявлениями венозной гиперемии являются отек ткани, цианоз, снижение обменных процессов и, как следствие, — снижение температуры в очаге воспаления. Усиление гипоксии и ацидоза стимулирует развитие соединительнотканных элементов по периферии очага воспаления и тем самым обеспечивает формирование барьера, отделяющего воспалительный очаг от здоровой ткани. В образовании барьера принимают участие также нейтрофилы и мононуклеары. Ограничение кровотока в участке венозной гиперемии и образование барьеров способствуют уменьшению резорбции из очага воспаления продуктов распада, токсических факторов, а также снижают риск распространения инфекционных агентов. Однако при развитии воспаления в паренхиматозных органах длительная венозная гиперемия может привести к снижению их функций и развитию склерозирования клеток. Исходом венозной гиперемии является стаз — полная остановка кровотока в сосудах. Распространенный стаз характерен для острого, быстроразвивающегося воспаления (гиперергического). Продолжительность и исход стаза могут быть различны. Стаз может длиться от нескольких часов до нескольких дней, он может быть обратимым и необратимым.

9.5.1. Механизмы эмиграции лейкоцитов Как уже было отмечено, важнейшим признаком венозной гиперемии является эмиграция лейкоцитов из сосудов в воспаленную ткань. Последовательность выхода лейкоцитов получила название закона Мечникова, согласно которому спустя несколько часов (1,5–2 ч) с момента действия альтерирующего фактора интенсивно эмигрируют нейтрофилы и другие сегментоядерные лейкоциты, а затем моноциты и лимфоциты. Процессу эмиграции предшествует нарушение осевого тока движения крови внутри сосуда. В условиях замедления кровотока эритроциты, объединяясь в «монетные столбики», занимают центральную часть сосуда, а лейкоциты, имеющие более низкую удельную массу, выходят из осевого тока сначала на границу плазматического слоя, а затем начинают прилипать к эндотелиальным клеткам сосуда. Важная роль в адгезии (лат. аdhaesio — прилипание) лейкоцитов отводится так называемым эндотелиально-лейкоцитарным адгезивным молекулам (ЭЛАМ), которые экспрессируются на поверхности лейкоцитов, эндотелиальных клеток и макромолекулах межклеточного матрикса в очаге воспаления. В процессе адгезии клеток происходит активация эндотелиоцитов, освобождение ими хемоаттрактантов и биологически активных соединений. Активаторами экспрессии ЭЛАМ в зоне альтерации являются биологически активные вещества — цитокины (ФНО, интерлейкины и др.).

163

К адгезивным молекулам относятся L- и Р-селектины, присутствующие на мембранной поверхности нейтрофилов, макрофагов, лимфоцитов и являющиеся рецепторами к селектинам эндотелиоцитов. Еще одной разновидностью селектинов лейкоцитов являются эндотелиальные межклеточные адгезивные молекулы. Необходимо отметить, что селектины не обеспечивают прочного прикрепления лейкоцитов к сосудистой стенке. Последнее достигается при участии интегринов — поверхностных рецепторов лейкоцитов, которые обеспечивают не только прочное взаимодействие клеток с эндотелием, но и межклеточную адгезию. В настоящее время идентифицировано пять видов интегринов. При недостаточном образовании селектинов и интегринов или выработке антител к мембранным рецепторам снижаются адгезивные свойства лейкоцитов, нарушается их способность к эмиграции, накоплению в очаге воспаления и фагоцитозу, что может способствовать частым гнойным инфекциям и развитию сепсиса. Важная роль в процессах адгезии и эмиграции принадлежит устранению отрицательного заряда эндотелиальных клеток и лейкоцитов за счет накопления в очаге воспаления одновалентных и двухвалентных ионов (Н, К, Са, Mn, Mg), а также катионных белков, выделяемых лейкоцитами. Факторами инициации адгезии лейкоцитов к стенке сосуда являются комплемент (С5а), лейкотриены, фибронектин, иммуноглобулины (Fc-фрагмент Ig G), гистамин. После адгезии происходят перемещение лейкоцита по поверхности эндотелиоцита к межэндотелиальной щели, которая в очаге воспаления значительно расширена, а затем образование ложноножки и передвижение лейкоцита через межэндотелиальную щель в подэндотелиальное пространство и базальную мембрану сосуда. Таким образом, лейкоциты оказываются за пределами сосуда. В большинстве случаев острого воспаления внутрисосудистые перемещения лейкоцитов и их эмиграция занимают несколько часов. Как правило, первыми в очаг воспаления выходят нейтрофилы, они обнаруживаются в воспаленной ткани уже через 6–24 ч. Несколько позднее эмигрируют моноциты и лимфоциты (24–48 ч). Необходимо отметить, что временные интервалы эмиграции лейкоцитов и последовательность их выхода весьма относительны и определяются типом сосуда, видом воспаления и стадией воспаления. Так, в зоне воспалительного процесса, иницируемого возбудителями туберкулеза, листериоза, хламидиоза, токсоплазмоза, вирусной инфекцией, первоначально в очаге воспаления доминируют мононуклеары; при аллергических реакциях — эозинофилы. Направленное движение лейкоцитов обеспечивается хемоаттрактантами, концентрация которых по мере развития вторичной альтерации в очаге воспаления нарастает, а также наличием рецепторов к различным хемоаттрактантам на поверхности лейкоцитов. При взаимодействии рецепторов и хемоаттрактантов возникает гиперполяризация мембраны лейкоцита, увеличивается ее проницаемость для ионов Са, инициируется синтез функционально активных фосфолипидов и циклических нуклеотидов, растет число внутриклеточных органел, функционирование которых обеспечивает перемещение лейкоцита и секрецию содержимого гранул. Помимо ориентированного движения лейкоцитов, хемоаттрактанты индуцируют адгезию лейкоцитов к эндотелию, способствуют краевому стоянию лейкоцитов и их агрегации в просвете микрососудов.

164

Хемотаксис опосредуется различными группами веществ: 1. Цитотоксигенами, которые, не являясь хемоаттрактантами, генерируют факторы хемотаксиса. 2. Цитотоксинами, которые оказывают прямое воздействие на лейкоциты. Некоторые цитотоксины специфичны для нейтрофилов (например, экстракт культуры Е. coli), а другие цитотоксины индуцируют миграцию гранулоцитов и моноцитов. Хемоаттрактанты могут иметь эндогенное и экзогенное происхождение. Экзогенными хемоаттрактантами являются пептиды бактерий, особенно содержащие N-формиловые группы. Свойствами эндогенных хемоаттрактантов обладают компоненты комплемента, иммуноглобулины, иммунные комплексы, лимфокины и монокины, кинины, лейкотриен В4, продукты липоксигеназного пути превращения арахидоновой кислоты, фактор, активирующий тромбоциты, фактор Хагемана, лизосомальные ферменты и др.

9.5.2. Роль лейкоцитов в очаге воспаления Эмигрировавшие в зону воспаления нейтрофилы являются активными фагоцитами, которые очищают зону воспаления от инфекционных возбудителей. Адгезия нейтрофилов к объекту фагоцитоза ускоряется благодаря опсонинам — активным белковым молекулам, прикрепляющимся к объекту и облегчающим распознавание объекта фагоцитирующими клетками. Одновременно с процессами направленного движения лейкоцитов и фагоцитозом в них происходит респираторный взрыв — резкое увеличение потребления кислорода для образования бактерицидных свободных кислородных радикалов (синглетный кислород, гидроксильный радикал, перекись водорода, супероксидный анион-радикал). Образование активных форм кислорода осуществляется с участием ферментов миелопероксидазы, супероксиддисмутазы и каталазы. Освобождающиеся в очаге воспаления активные формы кислорода являются высокотоксичными факторами для бактерий, грибов, микоплазм, вирусов, хламидий и др. возбудителей. Они нарушают структуру и функции мембран микробных клеток, ограничивают их жизнедеятельность или вызывают гибель микроорганизмов. Помимо антимикробной активности, усиление свободнорадикальных процессов вызывает повреждение интактных паренхиматозных клеток, эндотелиальных клеток сосудов и элементов соединительной ткани в очаге воспаления, что способствует дальнейшей альтерации ткани. Кроме вновь синтезирующихся факторов оксидантной системы, в гранулах нейтрофилов содержатся лизоцим, лактоферрин, катионные белки, щелочная и кислая фосфатазы, рибонуклеаза, дезоксирибонуклеаза, гиалуронидаза, β-глюкуронидаза, эластаза, коллагеназа, ФАТ, кинины, лейкоцитарный пироген, хемотаксические факторы. Таким образом, накопление нейтрофилов в очаге воспаления и освобождение ими указанных биологически активных веществ вызывают гибель или ограничение жизнедеятельности микроорганизмов, разрушение и лизис омертвевших тканей, очищение зоны повреждения. За счет нейтрофилов вокруг очага воспаления

165

формируется нейтрофильный защитный барьер, который отграничивает зону повреждения (совместно с моноцитарным и фибробластическим) от здоровой ткани и препятствует распространению инфекции и токсических повреждающих факторов. Высокоактивные медиаторы нейтрофилов участвуют в развитии вторичной альтерации, стимулируют выход биологически активных веществ из других клеток, способствуют расширению сосудов, увеличению их проницаемости, экссудации плазмы и эмиграции лейкоцитов. Поступая в системный кровоток, они вызывают проявление некоторых системных эффектов воспалительного процесса. Эмигрировавшие в зону воспаления эозинофилы также обладают способностью фагоцитировать бактерии, грибы, иммунные комплексы и содержат примерно такой же набор ферментов, как и нейтрофилы (кроме лизоцима). Однако в фагоцитозе участвует меньший процент эозинофилов, и он протекает менее интенсивно, чем у нейтрофилов. В очаге воспаления эозинофилы выполняют две основные функции: они являются модуляторами реакций гиперчувствительности и являются главным механизмом защиты против личиночных стадий паразитарных инфекций. Основными факторами, стимулирующими процесс дегрануляции эозинофилов, являются иммуноглобулины, иммунные комплексы, комплемент. Продукты секреции эозинофилов ингибируют выделение лаброцитами гистамина и участвуют в его инактивации за счет гистаминазы; эозинофильный катионный протеин связывает и нейтрализует гепарин, высокие концентрации арилсульфатазы инактивируют хемотаксические белки и медленнореагирующую субстанцию анафилаксии, фосфолипазы В и D инактивируют тромбоцит-активирующий фактор. Под влиянием экзогенных пирогенных факторов и первичных эндопирогенов эозинофилы продуцируют и выделяют вторичный эндогенный пироген, обеспечивающий развитие лихорадочной реакции, сопровождающей воспалительный процесс. Медиаторы эозинофилов, также как и нейтрофилов, могут участвовать в реакциях повреждения ткани и распространении вторичной альтерации. Базофильные лейкоциты, как и другие гранулоциты, обладают способностью к фагоцитозу, но их фагоцитарная активность довольно низка. В зоне инфекционного и аллергического воспаления возникает реакция дегрануляции базофилов с выделением медиаторов воспаления — гистамина, гепарина, фактора активации тромбоцитов, лейкотриенов, калликреина, эозинофильного хемотаксического фактора, ферментов. Вслед за гранулоцитами в очаге воспаления накапливаются мононуклеары. Моноциты, эмигрировавшие в ткани, превращаются в тканевые макрофаги. В зоне воспаления происходит накопление макрофагов за счет эмиграции моноцитов из кровеносного русла, а также за счет мобилизации тканевых макрофагов. Макрофаги обеспечивают фагоцитоз не только инфекционных возбудителей воспалительного процесса, но и клеточного детрита, тем самым очищая зону альтерации и подготавливая ее к последующей регенерации и репарации. Интенсивная эмиграция лимфоцитов в зону воспаления в большинстве случаев осуществляется после эмиграции нейтрофилов и моноцитов. Стимулированные лимфоциты выделяют биологически активные вещества — лимфокины, обеспечи

166

вающие развитие иммунного ответа, аллергических реакций, процессов пролиферации и репарации. Все лейкоциты в зоне воспаления довольно быстро подвергаются жировой дегенерации, превращаются в гнойные тельца и удаляются вместе с гноем.

9.6. Экссудация. Общая характеристика и механизмы развития Экссудация — это выход жидкой части крови через сосудистую стенку в воспаленную ткань. Выходящая из сосудов жидкость — экссудат — пропитывает воспаленную ткань или накапливается в полостях (плевральной, перитонеальной, перикардиальной и др.). В зависимости от особенностей клеточного и биохимического состава различают следующие виды экссудата: 1. Серозный экссудат почти прозрачный, характеризуется умеренным содержанием белка (3–5 % , в основном альбумины), невысоким удельным весом (1015–1020), рН в пределах 6–7. В осадке содержатся единичные сегментоядерные гранулоциты и слущенные клетки серозных оболочек. Серозный экссудат образуется при воспалении серозных оболочек (серозный плеврит, перикардит, перитонит и др.), а также при ожоговом, вирусном или аллергическом воспалении. Серозный экссудат легко рассасывается и не оставляет никаких следов или образует незначительное утолщение серозных оболочек. 2. Фибринозный экссудат характеризуется высоким содержанием фибриногена, который при соприкосновении с поврежденными тканями переходит в фибрин, вследствие чего экссудат уплотняется. На поверхность серозных оболочек фибрин выпадает в виде ворсинчатых масс, а на поверхность слизистых оболочек — в виде пленок. В связи с этими особенностями фибринозное воспаление подразделяется на дифтеритическое (плотно сидящие пленки) и крупозное (рыхло сидящие пленки). Крупозное воспаление развивается в желудке, кишечнике, бронхах, трахее. Дифтеритическое воспаление характерно для пищевода, миндалин, полости рта. Фибринозное воспаление может быть вызвано возбудителями дизентерии, туберкулеза, дифтерии, вирусами, токсинами эндогенного происхождения (напр., при уремии) или экзогенного (отравление сулемой). Прогноз фибринозного воспаления в значительной мере определяется локализацией и глубиной процесса. На серозных оболочках массы фибрина частично подвергаются аутолизу, а большая часть организуется, т.е. прорастает соединительной тканью, в связи с чем могут образовываться спайки и рубцы, нарушающие функцию органа. На слизистых оболочках фибринозные пленки подвергаются аутолизу и отторгаются, оставляя дефект слизистой оболочки — язву, глубина которой определяется глубиной выпадения фибрина. Заживление язв может происходить быстро, но в некоторых случаях (в толстом кишечнике при дизентерии) затягивается на длительные сроки. 3. Гнойный экссудат — это мутная воспалительная жидкость зеленоватого оттенка, вязкая, содержащая альбумины, глобулины, нити фибрина, ферменты,

167

продукты протеолиза тканей и большое количество полиморфноядерных лейкоцитов, преимущественно разрушенных (гнойные тельца). Гнойное воспаление может возникать в любой ткани, органе, серозных полостях, коже и протекать в виде абсцесса или флегмоны. Скопление гнойного экссудата в полостях организма носит название эмпиемы. Этиологические факторы гнойного воспаления разнообразны, оно может быть вызвано стафилококками, стрептококками, менингококками, гонококками, микобактериями, патогенными грибками и др. 4. Гнилостный экссудат (ихорозный) развивается при участии в воспалительном процессе патогенных анаэробов. Воспаленные ткани подвергаются гнилостному разложению с образованием дурно пахнущих газов и грязнозеленого экссудата. 5. Геморрагический экссудат характеризуется содержанием различного количества эритроцитов, вследствие чего он приобретает розоватую или красную окраску. Геморрагический характер может принять любой вид экссудата. Это зависит от степени проницаемости сосудов, вовлеченных в воспалительный процесс. Экссудат с примесью крови образуется при воспалении, вызванном высоковирулентными микроорганизмами, — возбудителями чумы, сибирской язвы, черной оспы, токсического гриппа. Геморрагический экссудат наблюдается также при аллергическом воспалении, при злокачественных новообразованиях. 6. Смешанные формы экссудата — серозно-фибринозный, серозногнойный, серозно-геморрагический, гнойно-фибринозный и др. возникают при присоединении вторичной инфекции при снижении защитных сил организма или прогрессировании злокачественной опухоли. При воспалении слизистых оболочек образуется экссудат с большим содержанием слизи, лейкоцитов, лимфоцитов и слущенных эпителиальных клеток. Такой экссудат как бы стекает по слизистой оболочке, поэтому воспаление называется катаральным (katarrheo — течь вниз). Таковы катаральные ринит, гастрит, риносинусит, энтероколит. По характеру экссудата говорят о серозном, слизистом или гнойном катарах. Обычно воспаление слизистой начинается с серозного катара, который затем переходит в слизистый и гнойный. Экссудация является одним из признаков венозной гиперемии и в то же время определяет характер тканевых изменений в очаге воспаления. Ведущим фактором экссудации является повышение проницаемости сосудов в зоне воспаления. Нарастание проницаемости сосудов осуществляется в две фазы. Первая фаза — ранняя, немедленная, развивается вслед за действием альтерирующего агента и достигает максимума на протяжении нескольких минут. Эта фаза обусловлена действием гистамина, лейкотриена Е4, серотонина, брадикинина на венулы с диаметром не более чем 100 мкм. Проницаемость капилляров при этом практически не меняется. Повышение проницаемости на территории венул связано с сокращением эндотелиоцитов сосуда, округлением клеток, образованием межэндотелиальных щелей, через которые происходит выход жидкой части крови и клеток. Вторая фаза — поздняя, замедленная, развивается постепенно в течение нескольких часов, суток и длится иногда до 100 часов. Для этой фазы характерно стойкое увеличение проницаемости сосудов (артериол, капилляров, венул), вызванное повреждением сосудистой стенки лизосомальными ферментами, активны

168

ми метаболитами кислорода, простагландинами, комплексом лейкотриенов (МРС), водородными ионами. В механизмах развития экссудации, помимо увеличения проницаемости сосудов, определенная роль принадлежит пиноцитозу — процессу активного захватывания и проведения через эндотелиальную стенку мельчайших капелек плазмы крови. В связи с этим экссудацию можно расссматривать как своеобразный микросекреторный процесс, обеспечиваемый активными транспортными механизмами. Активация пиноцитоза в эндотелии микрососудов в очаге воспаления предшествует увеличению проницаемости сосудистой стенки за счет сокращения эндотелиоцитов. Большое значение в развитии экссудации имеют осмотический и онкотический факторы. В тканях очага воспаления повышается осмотическое давление, при этом осмотическое давление крови практически не изменяется. Гиперосмия тканей обусловлена повышением в них концентрации осмоактивных частиц — ионов, солей, органических соединений с низкой молекулярной массой. К факторам, вызывающим гиперосмию, относятся усиленная диссоциация солей вследствие ацидоза тканей (лактатный ацидоз типа А), выход из клеток калия и сопутствующих ему макромолекулярных анионов, повышенный распад сложных органических соединений на менее сложные, мелкодисперсные, а также сдавление и тромбоз лимфатических сосудов, препятствующие выведению осмолей из очага воспаления. Одновременно с увеличением осмотического давления наблюдается увеличение и онкотического давления в тканях очага воспаления, в то время как в крови онкотическое давление снижается. Последнее обусловлено выходом из сосудов в ткани, в первую очередь, мелкодисперсных белков — альбуминов, а по мере повышения проницаемости сосуда — глобулинов и фибриногена. Кроме этого, в самой ткани под влиянием лизосомальных протеаз происходит распад сложных белковых макромолекул, что также способствует повышению онкотического давления в тканях очага воспаления. Фактором, способствующим экссудации, является увеличение гидростатического давления в микроциркуляторном русле и увеличение площади фильтрации жидкой части крови. Биологический смысл экссудации как компонента воспаления заключается в том, что вместе с экссудатом в альтерированную ткань выходят иммуноглобулины, активные компоненты комплемента, ферменты плазмы, кинины, биологически активные вещества, которые освобождаются активированными клетками крови. Поступая в очаг воспаления, они совместно с тканевыми медиаторами, обеспечивают опсонизацию патогенного агента, стимулируют фагоцитирующие клетки, участвуют в процессах килинга и лизиса микроорганизмов, обеспечивают очищение раны и последующую репарацию ткани. В экссудате обнаруживаются продукты обмена веществ, токсины, токсические факторы патогенности, вышедшие из тока крови, т.е. фокус очага воспаления выполняет дренажную функцию. За счет экссудата происходят сначала замедление кровотока в очаге воспаления, а затем и полная остановка кровотока при сдавлении капилляров, венул и лимфатических сосудов, которые приводят к локализации процесса и препятствуют диссеминации инфекции и развитию септического состояния.

169

В то же время скопление экссудата может приводить к развитию сильных болевых ощущений вследствие сдавления нервных окончаний и проводников. В результате сдавления паренхиматозных клеток и нарушения в них микроциркуляции могут возникнуть нарушения функции различных органов. При организации экссудата могут образовываться спайки, вызывающие смещение, деформацию и нарушение функции различных структур. В ряде случаев течение воспалительного процесса осложняется поступлением экссудата в альвеолы, в полости тела и приводит к развитию отека легких, плеврита, перитонита, перикардита.

9.7. Особенности нарушения обмена веществ в очаге воспаления Развитие альтерации, сосудистых изменений в зоне воспаления закономерно сочетается с типовыми расстройствами метаболизма. Прежде всего, следует отметить резкое увеличение обмена веществ на стадии артериальной гиперемии в связи с усилением оксигенации, повышением активности ферментов гликолиза и аэробного окисления. В эксперименте было показано, что потребление кислорода при этом повышается на 30–35 %. Одновременно происходит возрастание кровотока в системе микроциркуляции, что также способствует улучшению трофики тканей в зоне артериальной гиперемии и повышению температуры в очаге воспаления. Однако это длится недолго — на протяжении 2–3 часов в центральных участках воспалительного очага, а по периферии несколько дольше. Последовательная смена артериальной гиперемии венозной в зоне воспаления приводит к резкому снижению напряжения кислорода со 100–110 мм рт. ст. до 10–15 мм рт. ст., что сопровождается подавлением активности метаболических реакций в клетках поврежденной ткани. Необходимо отметить, что нарушение обменных процессов является не только следствием дефицита кислорода. Так, в очаге острого воспаления происходят набухание митохондрий различных клеток, разобщение аэробного окисления и сопряженного с ним окислительного фосфорилирования. При этом активируется гликолиз, накапливаются молочная, яблочная, янтарная, α-кетоглутаровая кислоты, недоокисленные продукты липолиза и протеолиза (жирные кислоты, полипептиды, аминокислоты, кетоновые тела). Избыточное накопление кислых метаболитов лежит в основе развития в зоне острого воспаления вначале компенсированного, а затем декомпенсированного метаболического ацидоза; причем, чем интенсивнее выражено воспаление, тем более глубокими являются сдвиги кислотно-основного состояния в очаге альтерации. Так, при остром абсцессе рН гнойного экссудата может снизиться до 5,0. Наряду с повышением кислотности в зоне воспаления повышается онкотическое и осмотическое давление в тканях. Это является в определенной мере результатом катаболических процессов — крупные молекулы расщепляются на более мелкие, их концентрация нарастает. Наблюдаются деполимеризация белково-гликозаминогликановых комплексов, распад белков, жиров, углеводов и накопление продуктов распада: свободных аминокислот, уроновых кислот, аминосахаров, полипептидов, низкомолекулярных полисахаридов. Катаболические процессы затрагивают и соединительную ткань, что

170

приводит к дезорганизации околокапиллярного соединительнотканного скелета и таким образом потенцируются расстройства микроциркуляции в зоне воспаления. Повышение осмотического давления в очаге воспаления обусловлено выходом из поврежденных клеток Nа, К, Са, макромолекулярных анионов, усиленной диссоциацией солей, вследствие ацидоза ткани, а также нарушением выведения осмолей из очага воспаления на стадии венозной гиперемии и стаза. Так, в гнойном экссудате концентрация ионов К может достигать 100–200 мг%, тогда как в нормальных тканях она не превышает 20 мг%. Повышение онко-осмотического давления в очаге воспаления способствует экссудации и развитию местного отека. Характеризуя состояние энергетического обеспечения клеток в зоне острого воспаления, следует отметить, что активация окислительно-восстановительных реакций на стадии артериальной гиперемии сопровождается и усилением синтеза макроергических соединений и, соответственно, активацией различных энергозависимых реакций в клетках. Между тем, на стадии венозной гиперемии в связи с развитием локального метаболического ацидоза, набухания митохондрий, разобщения процессов окислительного фосфорилирования и дыхания уровень макроергических соединений в клетках снижается. На фоне прогрессирующей гипоксии, свойственной венозной гиперемии и стазу, возникает дополнительная стимуляция процессов гликолиза, еще больше нарастает концентрация водородных ионов, формируется порочный круг. Одновременно с катаболическими процессами в поврежденной ткани активируются анаболические процессы. Они определяются уже на ранних этапах воспалительного процесса, но выражены еще слабо. На поздних стадиях воспаления возрастает синтез ДНК и РНК в клетках, повышается активность клеточных ферментов, активируются процессы окисления и окислительного фосфорилирования, увеличивается выход макроергов. В очаге воспаления накапливаются высокоактивные фибробласты, гистиоциты, гранулоциты, мононуклеары, обеспечивающие очищение зоны альтерации и выделяющие биологически активные вещества, стимулирующие размножение клеточных и соединительнотканных элементов в очаге воспаления.

9.8. Механизмы развития пролиферации в очаге воспаления Пролиферация является завершающей фазой развития воспаления, обеспечивающей репаративную регенерацию тканей на месте очага альтерации. Пролиферация развивается с самого начала воспаления наряду с явлениями альтерации и экссудации. Размножение клеточных элементов начинается по периферии зоны воспаления, в то время как в центре очага могут еще прогрессировать явления альтерации и некроза. Полного развития пролиферация соединительнотканных и органоспецифических клеточных элементов достигает после «очистки» зоны повреждения от клеточного детрита и инфекционных возбудителей воспаления тканевыми макрофагами и нейтрофилами. В связи с этим следует отметить, что процессу пролиферации предшествует образование нейтрофильного и моноцитарного барьеров, которые формируются по периферии зоны альтерации.

171

Восстановление и замещение поврежденных тканей начинается с выхода из сосудов молекул фибриногена и образования фибрина, который формирует своеобразную сетку, каркас для последующего клеточного размножения. Уже по этому каркасу распределяются в очаге репарации быстро образующиеся фибробласты. Деление, рост и перемещение фибробластов возможны только после их связывания с фибрином или коллагеновыми волокнами. Эта связь обеспечивается особым белком — фибронектином. Размножение фибробластов начинается по периферии зоны воспаления, обеспечивая формирование фибробластического барьера. Сначала фибробласты — незрелые и не обладают способностью синтезировать коллаген. Созреванию предшествует внутренняя структурно-функциональная перестройка фибробластов: гипертрофия ядра и ядрышка, гиперплазия ЭПС, повышение содержания ферментов, особенно щелочной фосфатазы, неспецифической эстеразы, β-глюкуронидазы. Только после перестройки начинается коллагеногенез. Интенсивно размножающиеся фибробласты продуцируют кислые мукополисахариды — основной компонент межклеточного вещества соединительной ткани (гиалуроновую кислоту, хондроитинсерную кислоту, глюкозамин, галактозамин). При этом зона воспаления не только инкапсулируется, но и возникает постепенная миграция клеточных и бесклеточных компонентов соединительной ткани от периферии к центру, формирование соединительнотканного остова на месте первичной и вторичной альтерации. Наряду с фибробластами размножаются и другие тканевые и гематогенные клетки. Из тканевых клеток пролиферируют эндотелиальные клетки, которые формируют новые капилляры. Вокруг новообразующихся капилляров концентрируются тучные клетки, макрофаги, нейтрофилы, которые освобождают биологически активные вещества, способствующие пролиферации капилляров. Фибробласты вместе с вновь образованными сосудами образуют грануляционную ткань. Это, по существу, молодая соединительная ткань, богатая клетками и тонкостенными капиллярами, петли которых выступают над поверхностью ткани в виде гранул. Основными функциями грануляционной ткани являются: защитная — предотвращает влияние факторов окружающей среды на очаг воспаления, и репаративная — заполнение дефекта и восстановление анатомической и функциональной полноценности поврежденных тканей. Формирование грануляционной ткани не строго обязательно. Это зависит от величины и глубины повреждения. Грануляционная ткань обычно не развивается при заживлении ушибленных кожных ранок или мелких повреждений слизистой оболочки. Грануляционная ткань постепенно превращается в волокнистую ткань, называемую рубцом. В рубцовой ткани уменьшается количество сосудов, они запустевают, уменьшается количество макрофагов, тучных клеток, снижается активность фибробластов. Небольшая часть клеточных элементов, располагающаяся среди коллагеновых нитей, сохраняет активность. Предполагают, что сохранившие активность тканевые макрофаги принимают участие в рассасывании рубцовой ткани и обеспечивают формирование более мягких рубцов.

172

Параллельно с созреванием грануляций происходит эпителизация раны. Она начинается в первые часы после повреждения, и уже в течение первых суток образуются 2–4 слоя клеток базального эпителия. Скорость эпителизации обеспечивается следующими процессами: миграцией, делением и дифференцировкой клеток. Эпителизация небольших ран осуществляется в основном за счет миграции клеток из базального слоя. Раны более крупные эпителизируются за счет миграции и митотического деления клеток базального слоя, а также дифференцировки регенерирующего эпидермиса. Новый эпителий образует границу между поврежденным и подлежащим слоем, он препятствует обезвоживанию тканей раны, уменьшению в ней электролитов и белков, а также предупреждает инвазию микроорганизмов. В процессе пролиферации участвуют и органоспецифические клеточные элементы органов и тканей. С точки зрения возможностей пролиферации органоспецифических клеточных элементов все органы и ткани могут быть расклассифицированы на три группы. К первой группе могут быть отнесены органы и ткани, клеточные элементы которых обладают активной или практически неограниченной пролиферацией, достаточной для полного восполнения дефекта структуры в зоне воспаления (эпителий кожи, слизистых оболочек дыхательных путей, слизистой желудочнокишечного тракта, мочеполовой системы; гемопоэтическая ткань и др.). Ко второй группе относятся ткани с ограниченными регенерационными способностями (сухожилия, хрящи, связки, костная ткань, периферические нервные волокна). К третьей группе относятся те органы и ткани, где органоспецифические клеточные элементы не способны к пролиферации (сердечная мышца, клетки ЦНС). Факторами, стимулирующими развитие процессов пролиферации, являются: 1. Проколлаген и коллагеназа фибробластов, взаимодействующие по типу ауторегуляции и обеспечивающие динамическое равновесие между процессами синтеза и разрушения соединительной ткани. 2. Фибронектин, продуцируемый фибробластами, детерминирует миграцию, пролиферацию и адгезию клеток соединительной ткани. 3. Фактор стимуляции фибробластов, секретируемый тканевыми макрофагами, обеспечивает размножение фибробластов и их адгезивные свойства. 4. Цитокины мононуклеаров стимулируют пролиферативные процессы в поврежденной ткани (ИЛ-1, ФНО, эпидермальный, тромбоцитарный, фибробластический факторы роста хемотаксические факторы). Некоторые цитокины могут ингибировать пролиферацию фибробластов и образование коллагена. 5. Пептид гена, родственного кальцитонину, стимулирует пролиферацию эндотелиальных клеток, а субстанция Р индуцирует выработку ФНО в макрофагах, что приводит к усиленному ангиогенезу. 6. Простагландины группы Е потенцируют регенерацию путем усиления кровоснабжения. 7. Кейлоны и антикейлоны, продуцируемые различными клетками, действуя по принципу обратной связи, могут активировать и угнетать митотические процессы в очаге воспаления.

173

8. Полиамины (путресцин, спермидин, спермин), обнаруживаемые во всех клетках млекопитающих, жизненно необходимы для роста и деления клеток. Они обеспечивают стабилизацию плазматических мембран и суперспиральной структуры ДНК, защиту ДНК от действия нуклеаз, стимуляцию транскрипции, метилирование РНК и связывание ее с рибосомами, активацию ДНК-лигаз, эндонуклеаз, протеинкиназ и многие другие клеточные процессы. Усиленный синтез полиаминов, способствующих пролиферативным процессам, отмечается в очаге альтерации. 9. Циклические нуклеотиды: цАМФ ингибирует, а цГМФ активирует процессы пролиферации. 10. Умеренные концентрации биологически активных веществ и ионов водорода являются стимуляторами регенераторных процессов.

9.9. Влияние очага воспаления на организм Локальные расстройства кровоснабжения и обменных процессов в зоне воспаления, как правило, сочетаются с комплексом метаболических и функциональных расстройств на уровне целостного организма. Прежде всего, необходимо отметить, что эмигрировавшие и возбужденные в зоне воспаления нейтрофилы, моноциты, тканевые макрофаги обладают способностью интенсивно продуцировать эндогенные пирогены. Процесс выработки пирогена у моноцитов/макрофагов длится дольше, чем у нейтрофилов. Высокой пирогенной активностью обладают ИЛ-1, ИЛ-6, ФНО, и в меньшей степени интерфероны, катионные белки, макрофагальный воспалительный белок 1-α. Эндопирогены являются низкомолекулярными термолабильными сложными белковыми комплексами, образующимися в зоне инфекционного, асептического и аллергического воспаления и обладающими свойствами индуцировать развитие лихорадочной реакции. В связи с этим становятся очевидными механизмы взаимосвязи двух типовых патологических процессов — воспаления и лихорадки, составляющих основу многих заболеваний инфекционной и неинфекционной природы. Развитие макрофагальной реакции в зоне воспаления влечет за собой образование высокоиммуногенных форм антигенов, стимуляцию Т- и В-лимфоцитов и соответственно выработку специфических гуморальных антител, повышение их уровня в крови, активацию киллерного эффекта и усиление продукции лимфокинов. Межклеточные взаимодействия между мононуклеарными фагоцитами и иммунокомпетентными клетками осуществляются через высвобождение цитокинов. Цитокины вызывают не только интегрирование элементов системы иммунитета, но и формирование системной реакции острой фазы. В основном реакцию острой фазы вызывают ИЛ-1, ИЛ-6, ФНО, интерфероны. ИЛ-1 является индуктором системной реакции острой фазы. Он стимулирует выход полиморфонуклеаров из костного мозга и вызывает лейкоцитоз со сдвигом влево, усиливает дегрануляцию лейкоцитов, активирует их оксидазную активность.

174

Под влиянием ИЛ-1 активируется циклоксигеназа в миоцитах произвольных мышц, увеличивается образование в них простагландина Е1 и происходит распад протеинов мышц, поэтому при воспалении, сопровождающемся лихорадкой, наблюдаются снижение массы тела и гиподинамия. Воздействуя на нейроны головного мозга, ответственные за медленный сон, ИЛ-1 способствует развитию заторможенности и сонливости, которые нередко сопровождают воспалительные процессы и лихорадку. Влияние ИЛ-1 на ЦНС повышает уровень секреции АКТГ и СТГ, что приводит к росту содержания в плазме крови глюкозы, свободных жирных кислот, аминокислот. В результате в крови растет концентрация энергопластических субстратов, доступных для утилизации в ходе защитных реакций организма. Необходимо отметить, что увеличение продукции АКТГ тормозит освобождение ИЛ-1 клетками организма и, таким образом, происходит самоограничение воспалительной реакции и реакции острой фазы при воспалении. Кроме этого, под влиянием гиперкортизолемии уменьшаются активность фосфолипазы А2 и синтез простагландина Е2, что приводит к снижению образования повреждающих факторов в зоне воспаления. Одним из проявлений реакции острой фазы является синтез в печени белков острой фазы и повышение их концентрации в крови. К белкам острой фазы относятся С-реактивный белок, гаптоглобин, церуллоплазмин, плазминоген, трансферрин, α-1-антитрипсин, антитромбин III, фракция С3 комплемента и др. Рост концентрации белков острой фазы является маркером острого воспаления. Одновременно уменьшается синтез альбуминов гепатоцитами. Нарушение белоксинтезирующей функции печени проявляется в виде гипоальбуминемии, диспротеинемии и парапротеинемии. При развитии воспалительного процесса повышается способность эритроцитов к агглютинации, снижается величина отрицательного заряда мембраны эритроцита за счет адсорбции на ее поверхности различных макромолекул, что и приводит к ускорению СОЭ. Образование в зоне альтерации бактериальных экзо- или эндотоксинов, продуктов жизнедеятельности микроорганизмов, продуктов распада собственных тканей, биологически активных веществ при слабо выраженной защитной реакции макроорганизма, недостаточности барьеров, отделяющих очаг воспаления от здоровых тканей, может приводить к поступлению их в системный кровоток и способствовать развитию интоксикации.

175

1   2   3   4   5   6   7   8   9


написать администратору сайта