Главная страница

Патофизиология шока


Скачать 122.07 Kb.
НазваниеПатофизиология шока
Дата29.05.2018
Размер122.07 Kb.
Формат файлаdocx
Имя файлаpatfiz 2 modul.docx
ТипГлава
#45329
страница2 из 9
1   2   3   4   5   6   7   8   9

100

Патологическое депонирование крови усугубляет диспропорцию между емкостью сосудистого ложа и объемом циркулирующей крови, то есть является важнейшим патогенетическим фактором развития шокового состояния, характеризующегося недостаточностью регионарного кровотока и микроциркуляции. Итак, в эректильной стадии шока в связи с активацией симпатоадреналовой системы, ренин-ангиотензиновой системы, усилением освобождения в синаптических структурах или в кровоток норадреналина, адреналина, ангиотензина-II, глюкокортикоидов, происходят спазм пре- и посткапилляров периферических органов и тканей, уменьшение скорости кровотока через капилляры, агрегация эритроцитов преимущественно в венулах. При этом, естественно, возникает циркуляторная гипоксия, сопровождающаяся, в свою очередь, комплексом вторичных неспецифических метаболических и функциональных сдвигов. В частности, в зоне гипоксии начинают накапливаться недоокисленные продукты метаболизма, формируется вначале компенсированный, а затем декомпенсированный метаболический ацидоз. В условиях ацидоза возникает комплекс реакций компенсации и повреждения. Во-вторых, отмечаются явления дегрануляции тучных клеток, в окружающую среду в избытке поступают высокоактивные соединения, в частности гистамин, серотонин, лейкотриены, гепарин, фактор агрегации тромбоцитов, факторы хемотаксиса нейтрофилов и т.д., многие из которых обладают вазоактивным действием, вызывают расширение сосудов микроциркуляторного русла, повышение проницаемости сосудистой стенки, развитие плазмопотери и последующее сгущение крови. Следует отметить, что под влиянием избытка водородных ионов в периферических органах и тканях возникает дестабилизация мембран лизосом, что приводит к выходу во внеклеточную среду большого количества лизосомальных ферментов. Последние вызывают деструкцию белковых, липидных, углеводных компонентов клеточных мембран и межклеточного вещества соединительной ткани. Активация фосфолипаз лизосом сопровождается увеличением продукции полиненасыщенных жирных кислот, субстратной активацией ферментов циклоксигеназы и липоксигеназы, в связи с чем начинается интенсивный синтез простагландинов и лейкотриенов, обладающих выраженным вазодилататорным эффектом, повышающих проницаемость сосудов, индуцирующих развитие плазмопотери, сгущение крови. Повреждение эндотелия сосудов в зоне циркуляторной гипоксии, обнажение коллагена сосудистой стенки сопровождаются усилением процессов адгезии и агрегации тромбоцитов, а также активацией внутреннего и внешнего механизмов формирования протромбиназной активности, то есть создаются предпосылки развития тромбогеморрагического синдрома. Под влиянием избытка водородных ионов возникают открытие артериоловенулярных шунтов и феномен новообразования капилляров, не функционирующих в условиях нормы, увеличивается емкость сосудистого ложа. Следует отметить, что сброс крови через артериовенозные шунты усугубляет состояние гипоксии, поскольку они не обеспечивают трансмембранного обмена кислорода с тканями. Таким образом, сочетанные эффекты избытка водородных ионов, а также комплекса биологически активных соединений в зоне периферической вазоконстрикции, индуцированной активацией адренергических влияний, обусловят резкое увеличение емкости микроциркуляторного русла, потерю эластичности микросо

101

судами, повышение их проницаемости, что приведет в конечном итоге к развитию патологического депонирования крови и шокового состояния. Патологическое депонирование крови вначале развивается в микрососудах зоны травмы, кожи, подкожной клетчатки, мышечной ткани, кишечника, а при длительной гипоксии- и в печени, почках, поджелудочной железе. В связи с развитием патологического депонирования крови, плазмопотерей возникает сгущение крови, резко снижается объем циркулирующей крови, уменьшается венозный возврат. Снижение венозного возврата ведет к дальнейшей стимуляции симпатоадреналовой системы, тахикардия еще более усугубляется. При этом резко снижается время диастолы и диастолического наполнения полостей сердца, падает сердечный выброс, падает артериальное давление, усугубляется шоковый синдром. Таким образом, в основе шокового состояния лежит диспропорция между объемом циркулирующей крови и емкостью сосудистого русла, когда емкость сосудистого русла имеет тенденцию к прогрессирующему возрастанию в динамике шока, а объем циркулирующей крови резко снижается. Падение объема циркулирующей крови в динамике травматического шока, как указывалось выше, обусловлено комплексом патогенетических факторов: возможной кровопотерей, обязательной плазмопотерей в связи с повышением проницаемости сосудистой стенки микроциркуляторного русла различных периферических органов и тканей, патологическим депонированием крови, снижением систолического выброса как следствия снижения венозного возврата и активации симпатоадреналовой системы. Одной из ключевых проблем диагностики и лечения шока при тяжелых травмах является правильность оценки тяжести травматического шока в торпидной фазе. В настоящее время существуют разнообразные критерии тяжести гемодинамических расстройств, в том числе и с использованием методов оценки сердечного выброса, кислородного потока и степени гипоксии, осмолярности и коллоидноосмотического давления плазмы, объема плазмы, метаболических расстройств, коагуляционного статуса, водно-электролитного баланса и функции почек, дыхательной функции легких и т.д. Однако в экстренной клинической практике нередко используют общепринятые интегративные критерии оценки тяжести расстройств гемодинамики при шоке — величину артериального давления и частоту пульса. Наиболее распространенной является классификация тяжести течения шока по величине систолического давления: давление, равное 90 мм рт. ст., свидетельствует о шоке 1-й степени, 85–75 мм рт. ст. — о шоке 2-й степени, 70 мм рт. ст. и ниже — о шоке 3-й степени. Для оценки тяжести гемодинамических расстройств используют и индекс Алговера, представляющий собой отношение частоты пульса к величине систолического артериального давления. В условиях нормы указанный показатель равен 0,5–0,6, при шоке 1-й степени — 0,7–0,8, 2-й степени — 0,9–1,2, 3-й степени — 1,3 и выше. Для разработки принципов патогенетической терапии шока необходимо четко представлять себе механизмы развития торпидной стадии травматического шока, патогенетические факторы, обусловливающие трансформацию эректильной стадии шока в торпидную.

102

Длительное время существовала точка зрения, согласно которой трансформация эректильной стадии шока в торпидную возникает вследствие прогрессирующих расстройств гемодинамики, выраженной циркуляторной гипоксии вначале в периферических органах и тканях, а по мере развития патологического депонирования крови и падения артериального давления имеющей место в структурах мозга и сердца. Следует отметить, что факт прогрессирующей циркуляторной гипоксии в динамике травматического шока является неоспоримым, а в условиях гипоксии, как известно, возникает дефицит макроэргов, подавляются все энергозависимые реакции в клетках, в том числе и трансмембранный перенос ионов, возникают явления деполяризации клеток, изменяется их возбудимость и соответственно функциональная активность. Однако, несмотря на вышеизложенную закономерность метаболических сдвигов и расстройств гемодинамики, обусловливающих трансформацию эректильной стадии шока в торпидную, далеко не все исследователи отмечают мгновенное истощение энергетических субстратов в тканях мозга в эректильной стадии шока, при этом уровень АТФ остается нормальным даже в торпидной стадии шока. В механизмах трансформации эректильной стадии шока в торпидную важная роль должна быть отведена выраженным расстройствам нейрогормональной и гуморальной регуляции функции органов и систем. Во-первых, резкая активация гипоталамо-гипофизарно-надпочечниковой системы в эректильной стадии шока, усиление продукции гормонов АКТГ и глюкокортикоидов сопровождаются интенсификацией метаболизма глюкокортикоидов в тканях и столь же быстрым истощением пучковой зоны коры надпочечников и соответственно продукции ими глюкокортикоидов. В условиях относительного дефицита глюкокортикоидов подавляются многие неспецифические реакции адаптации, свойственные стресс-синдрому, в том числе падает базальный сосудистый тонус, прогрессируют шоковое состояние, циркуляторная гипоксия и связанная с ней полиорганная недостаточность. В то же время чрезмерная активация симпатоадреналовой системы в эректильной стадии шока индуцирует включение эндогенных антистрессорных механизмов защиты — усиливается синтез в структурах мозга, в различных внутренних органах и тканях тормозных медиаторов, в частности γ-аминомасляной и γ-оксимасляной кислот, простагландинов группы Е, опиоидных нейропептидов, которые, в свою очередь, ограничивают стресс-реакцию, однако, выделяясь в неадекватных концентрациях, могут усугублять расстройства гемодинамики, свойственные шоковым состояниям, и соответственно тяжесть клинических проявлений шока.

7.2.1. Осложнения травматического шока Возникновение полиорганной недостаточности при травматическом шоке обусловлено, с одной стороны, прогрессирующими расстройствами гемодинамики, развитием циркуляторной гипоксии, с другой, — чрезмерной продукцией гормонов адаптации, в частности катехоламинов и глюкокортикоидов, индуцирующих не только активацию защитно-приспособительных реакций, но и реакций повреждения. Прежде всего, необходимо отметить тот факт, что различная способность органов противостоять снижению кровотока и циркуляторной гипоксии определяет и динамику изменений функционального состояния органа в процессе развития шока.

103

Сердце при шоке. Как указывалось выше, в динамике травматического шока возникает выраженная активация симпатоадреналовой системы, обеспечивающая развитие механизмов срочной адаптации к действию экстремального раздражителя, например: увеличение силы, частоты сердечных сокращений, повышение возбудимости и проводимости миокарда, увеличение выброса депонированной крови, увеличение скорости кровотока, активацию метаболизма в миокарде, расширение коронарных сосудов, увеличение коронарного кровотока. Однако длительная, чрезмерная активация симпатоадреналовой системы при травматическом шоке сопровождается и развитием комплекса реакций повреждения. Как известно, в условиях прогрессирующей тахикардии, близкой к 170–180 уд/ мин, возникает резкое снижение сердечного выброса, что приводит соответственно к снижению минутного объема крови, падению артериального давления, развитию циркуляторной гипоксии. В то же время общеизвестен тот факт, что коронарный кровоток примерно на 85 % осуществляется в период диастолы. Естественно, что при прогрессирующей тахикардии происходит укорочение диастолы, соответственно снижается интенсивность коронарного кровотока, возникает возможность развития коронарной недостаточности. В условиях активации симпатоадреналовой системы и гипоксии, свойственных шоковым состояниям, возникают активация лизосомальных гидролаз, в частности фосфолипаз, гидролиз мембранных фосфолипидов, увеличение концентрации высших жирных кислот в миокарде. Последние, с одной стороны, являются основным энергетическим субстратом для миокарда, а с другой стороны, обладают кардиоцитотоксическим действием, вызывая развитие аритмий. К характерным явлениям шоковых состояний относится повреждение мембранного аппарата и ферментных систем кардиомиоцитов в связи с интенсификацией процессов свободнорадикального перекисного окисления липидов. В качестве прооксидантных факторов выступают продукты гидролиза АТФ, катехоламины, восстановленные формы метаболитов и коферментов, металлы с переменной валентностью, в частности железо миоглобина. Детергентное действие на мембраны миокардиоцитов продуктов перекисного окисления липидов заключается во включении в мембраны с последующей депротеинизацией, делипидизацией их, образовании сквозных каналов-кластеров. В условиях прогрессирующей тахикардии, свойственной шоковым состояниям, возникает резкое увеличение концентрации кальция в миокардиоцитах. Последнее обусловлено несколькими патогенетическими факторами: увеличением частоты прихода импульса к миокардиоцитам, повышенной проницаемостью сарколеммы, которая в норме препятствует внутриклеточному току кальция по градиенту концентрации, снижением активности кальциевого насоса саркоплазматической сети, аккумулирующей кальций в период диастолы, снижением мощности энергозависимых механизмов, ответственных за удаление кальция из саркоплазмы. Избыточная задержка кальция в миокарде в динамике травматического шока сопровождается нарушением диастолического расслабления миокарда вплоть до остановки сердца в систоле. При этом увеличивается захват кальция митохондрия

104

ми, возникают набухание митохондрий, разобщение процессов окислительного фосфорилирования и дыхания, дальнейший дефицит АТФ, значительное снижение сократительной способности миокарда и всех энергозависимых реакций в миокарде. Избыточное накопление ионов кальция и натрия в процессе прогрессирующей тахикардии при шоке сопровождается гипергидратацией гиалоплазмы и органелл миокардиоцитов, возникает усугубление кальциевой альтерации миокарда. Регионарный кровоток и полиорганная недостаточность. Дисфункция многих органов при травматическом шоке определяется в значительной мере состоятельностью регионарного кровотока и степенью чувствительности различных органов и тканей к циркуляторной гипоксии. В условиях нормы в артериальной системе содержится 15 % циркулирующей крови, в то время как в венозной — 80 %, а в системе микроциркуляции — лишь 5 %, причем печень и спланхническая область получают 20 %, сердце, легкие, верхняя полая вена и грудная аорта — около 25 % всего объема циркулирующей крови. Следует отметить, что при давлении ниже 75 мм рт. ст., несомненно, развивается гипоксия почек и кишечника, нарушаются их функции. При снижении систолического давления ниже 35 мм — страдают легкие и сердце, а ниже 20 мм рт. ст. не обеспечивается перфузия ни одной ткани. Обращает на себя внимание тот факт, что эффективность оксигенации тканей нарушается в значительно большей степени, чем падает интенсивность их перфузии. Так, при понижении кровотока на 20–30 % в брыжеечной, почечной, бедренной и подкрыльцовой артериях оксигенация соответствующих тканей снижается на 40–60 %. Патогенез «шокового легкого». Нарушения дыхательной функции легких представляют интерес не только в остром периоде травмы и шока, но и в постшоковые периоды травматической болезни. Под «шоковым легким» понимают совокупность расстройств кровообращения, структуры легких и их дыхательной функции в шоковый и постшоковый периоды. При торакальной травме легочные осложнения наблюдаются более чем в 90 % всех случаев, а при неторакальной — в 70 %. Для «шокового легкого» характерны следующие признаки: повышение бронхиальной секреции, недостаточное очищение воздухоносных путей, развитие отека легких, дыхательной недостаточности. Этиопатогенетическими факторами развития «шокового легкого» являются: прямая травма легочной ткани, повышение венозного давления в малом круге кровообращения, повышение проницаемости сосудов, спазм бронхов и бронхиол, вызывающих развитие ателектаза, повышение секреции слизистых желез бронхов, эмболия сосудов легких агрегатами тромбоцитов, эритроцитов, жировая эмболия сосудов малого круга кровообращения. Нередко возникновение «шокового легкого» связано с интенсивной противошоковой терапией: длительной искусственной вентиляцией легких, чрезмерными инфузиями крови и жидкостей, применением чистого кислорода. Касаясь механизмов развития «шокового легкого» на клеточном, органном и системном уровнях, необходимо отметить динамическое взаимодействие местных факторов повреждения паренхимы легких и параллельно развивающихся расстройств нейрогуморальной регуляции функции легких. Как указывалось выше, в эректильной стадии шока возникает чрезмерная активация симпатоадреналовой системы, ренин-ангиотензиновой системы, формируется вторичный гипераль

105

достеронизм. В связи с усилением адренергических нервных влияний повышается нейрогенный сосудистый тонус и возникает выраженная вазоконстрикция в большом круге кровообращения уже в эректильной фазе шока, усиливающаяся и в торпидной фазе. Резкое повышение периферического сопротивления в сосудах большого круга приводит к функциональной недостаточности левого желудочка. В связи с увеличением венозного возврата в эректильной стадии и фазе компенсации торпидной стадии шока возникает перегрузка малого круга кровообращения, повышается гидродинамическое давление как в артериальной, так и венозной частях малого круга кровообращения. При подъеме венозного давления выше 25 мм рт. ст. развивается транссудация жидкости в легочную ткань, так как гидростатическое давление в этом случае преобладает над коллоидоосмотическим давлением. Если давление в венозном отделе малого круга кровообращения поднимается до 50 мм рт. ст. и выше, возможны разрыв сосуда и кровоизлияние в легочную ткань. При черепно-мозговой травме нарушения функции легких усугубляются скоплением слизи в бронхах и трахее из-за подавления кашлевого рефлекса, аспирации слюны и рвотных масс. Усугубляется развитие явлений «шокового легкого» активацией холинергических нервных влияний в торпидной стадии шока, что приводит к повышению проницаемости альвеолярно-капиллярных мембран в легких и усилению транссудации жидкости. Факторами, способствующими развитию отека легких при травматическом шоке, являются гипергидратация в связи с неадекватно большими инфузиями жидкостей и вторичный гиперальдостеронизм, формирующийся обычно в торпидной стадии шока и обусловливающий чрезмерную задержку натрия в различных органах и тканях, в том числе и в легких, повышение их гидрофильности. Катехоламины, метаболический ацидоз индуцируют повышение свертываемости крови, образование внутрисосудистых агрегатов тромбоцитов, эритроцитов, вызывая явления тромбоэмболии сосудов малого круга кровообращения. Нарушение микроциркуляции в легких влечет за собой каскад реакций освобождения биологически активных соединений, обладающих выраженным вазоактивным и бронхоспастическим действием. Так, в условиях гипоксии, расстройств микроциркуляции возникает активация системы комплемента, калликреин-кининовой системы, дегрануляция тучных клеток и тромбоцитов с освобождением гистамина, серотонина, кининов, лейкотриенов, вызывающих явления бронхоспазма, усиление секреции слизи бронхами, повышение проницаемости микрососудов. В условиях тяжелой гипоксемии, чрезмерного накопления в тканях кислых продуктов метаболизма вслед за первоначальной активацией бульбарного дыхательного центра возникает подавление его активности в фазе декомпенсации торпидной стадии шока. Таким образом, в динамике травматического шока формируются и обструктивный, и рестриктивный типы дыхательной недостаточности, обусловленные явлениями бронхоспазма и ограничением площади газообмена в легких. Развитие «шокового легкого» может возникать на фоне интенсивного введения кристаллоидов, чистого кислорода, вызывающих прямое или опосредованное повреждающее воздействие на паренхиму легких.
1   2   3   4   5   6   7   8   9


написать администратору сайта