Главная страница

астрономия. астро1. Пьер Симон Лаплас. Возникновение небесной механики Лаплас родился 23 марта 1749 года в Бомоне, расположенном на живописном берегу мелководной речушки Ож в Нижней Нормандии


Скачать 78.17 Kb.
НазваниеПьер Симон Лаплас. Возникновение небесной механики Лаплас родился 23 марта 1749 года в Бомоне, расположенном на живописном берегу мелководной речушки Ож в Нижней Нормандии
Анкорастрономия
Дата30.04.2023
Размер78.17 Kb.
Формат файлаrtf
Имя файлаастро1.rtf
ТипДокументы
#1099351

Пьер Симон Лаплас. Возникновение небесной механики

Лаплас родился 23 марта 1749 года в Бомоне, расположенном на живописном берегу мелководной речушки Ож в Нижней Нормандии.

О юности Лапласа, обо всем периоде его жизни до появлении в Париже не сохранилось почти никаких сведений, и не случайно. Лаплас не только не стремился посвятить в воспоминания отроческих лет своих друзей и знакомых, но, наоборот, всячески скрывал свое происхождение, стыдясь его. Признанный гений и вельможа предпочитал не обнажать убогую обстановку своего детства. В этом отношении Лаплас сильно отличался от многих своих современников-ученых, вышедших из народной среды и охотно подчеркивавших свое происхождение.

Прекрасная память и блестящие способности молодого Пьера позволили ему почти на лету усвоить науки, преподаваемые в провинциальной школе. Древние языки, особенно латинский, на котором он впоследствии свободно писал, классическую литературу и математику Пьер освоил без труда. Некоторое время было посвящено в школе теологии и богословию. Эти предметы преподносились ученикам в форме казуистических дискуссий на абстрактно-религиозные темы. Юноша Лаплас мало интересовался религией, и ещё тогда, присмотревшись к закулисной стороне жизни служителей церковного культа, он сделался убеждённым атеистом. Однако в последствии Лаплас охотно поддерживал разговоры на богословские темы и с большим остроумием разбирал тонкие богословские вопросы: их казуистика забавляла его, он находил в них остроумные формально-логические комбинации, своего рода математическую игру понятиями.

Ещё в коллеже Лаплас приступил к самостоятельному изучению более сложных математических сочинений , лежавших вне кругозора его педагогов. Тогда же он ознакомился с работами Ньютона по механике и по теории всемирного тяготения, которая только начинала распространяться во Франции. В семнадцать лет юный Пьер Лаплас выполнил свою первую самостоятельную научную работу по математике.

Уже в это время потихоньку от наставников Лаплас ознакомился со взглядами великих деятелей эпохи Просвещения, основоположников механистического материализма: Даламбера, Дидро, Гельвеция, Гольбаха и других. «Большая энциклопедия наук, искусств и ремесел», открывшая человечеству новые основы мировоззрения в области естествознания и общественных явлений, произвела на него большое впечатление. Позднее, уже после переезда в Париж, талантливый юноша ознакомился с «Системой природы» Гольбаха – библией материализма, как любили тогда называть эту книгу.

Механика Ньютона, завершителем которой был Лаплас, возникла в процессе борьбы, формирующейся в недрах феодализма буржуазии с феодальным строем и католической церковью. Развитие производительных сил требовало развития науки, и буржуазия на первых порах сделала науку своим союзником в этой борьбе.

Уже в семнадцать лет Лаплас предстает перед нами человеком с довольно обширными знаниями и определившимися философскими взглядами.

Военное искусство, в особенности артиллерия и фортификация, уже тогда нуждалось в применении математики и механики, и в военных школах, кроме уставов, фехтования, тактики и т. п., стали вводить математические науки. Однако в рядовой военной школе, где преподавал Лаплас, математические курсы были элементарными и не могли дать удовлетворения его пылкому уму и растущим знаниям. Правда, он мог вести в свободное время самостоятельные научные исследования, но кто мог их оценить, кто мог увидеть в них всю силу его гения?

Молодой Лаплас искал выхода своим силам, приложения знаниям, общения с математическими умами своего времени, мечтал о научной работе и удачной житейской карьере. Юношу тянуло в Париж – туда, где в Академии наук, основанной в 1666г. министром Людовика XIV Кольбером, собрался цвет не только французской, но и мировой научной мысли. Парижская академия наук переживала в этот период свой высший расцвет. Здесь собралась целая плеяда гениев в области математики и механики, открывавших человечеству все новые и новые страницы знания.

Наиболее влиятельным лицом в Академии в то время был Жан Даламбер. Творец «Аналитической механики», один из корифеев «Энциклопедии», он пользовался огромным почетом.

Едва устроившись в Париже, Лаплас, вооруженный рекомендательными письмами, направился в Академию наук, желая видеть Даламбера, говорить с ним, заслужить его внимание. Могут ли рекомендации его бомонских покровителей не произвести впечатление на Даламбера?

Действительность, однако, не оправдала надежд молодого провинциала. Даламбер недаром был энциклопедистом и борцом за новое мировоззрение. Никакие рекомендательные письма не могли вызвать его внимания к человеку, пока он не удостоверялся в личных достоинствах кандидата.

Переслав Даламберу свои рекомендации, Лаплас долго и безуспешно пытался привлечь внимание великого геометра или хотя бы добиться длительной беседы с ним. Все было тщетно. Ни в Академии, ни дома встреча с Даламбером не удавалась.

Однажды, продолжая охоту за Даламбером, Лаплас ждал в приёмной возвращения учёного. Вдруг ему пришла в голову блестящая мысль. Он сел за стол, очинил перо и быстро изложил Даламберу свои взгляды на основные принципы механики и вероятное развитие этой науки в ближайшем будущем.

Письмо Лапласа произвело на Даламбера огромное впечатление. Такой эрудиции и глубины мысли он ещё не встречал. На следующий же день Даламбер ответил Лапласу: «Милостивый Государь! Вы имели случай убедиться, как мало я обращаю внимания на рекомендации, но Вам они были совершенно не нужны. Вы зарекомендовали себя сами, и этого мне совершенно достаточно. Моя помощь – к вашим услугам. Приходите же, я жду Вас». Юноша не заставил себя ждать.

Через несколько дней, благодаря Даламберу, Лаплас стал профессором математики в Королевской военной школе в Париже.

В течении двух лет Лаплас забрасывал Академию наук работами по математике и механике, всегда глубокими и оригинальными. Уже в это время он написал ряд исследований по теории вероятностей, по чистой математике и по небесной механике, которая скоро стала главным предметом его занятий.

Небесная механика, т. е. изучение движений небесных тел на основе закона всемирного тяготения, была одной из наиболее трудных и сложных областей как астрономии, так и науки вообще. Даже для простого ознакомления с нею требовалось прекрасное знание как результатов наблюдательной астрономии, так и сложнейших методов математического анализа и механики, в те времена ещё далеко не совершенных.

В 1773 году Лаплас был избран в Парижскую академию наук, правда, не как геометр, чего ему хотелось, а как адъюнкт-механик.

С упоением Лаплас создавал свой знаменитый труд «Изложение системы мира», где без единой формулы, доступно преподносилась вся сумма астрономических знаний той эпохи. Лаплас приводил точнейшие тогда числовые значения, касающиеся планет и их спутников, Луны и Солнца. В это сочинение он внес много данных, добытых им самим путем кропотливых расчетов, а также высказал ряд мыслей, которые и сейчас представляют огромный интерес.

История изданий этого популярного по форме изложения, но глубоко содержательного сочинения была исследована Б.Ю. Левиным в 70-х годах нашего века.

Странно, что это наиболее популярное и многосторонне сочинение Лапласа почти никогда не обсуждалось с современных позиций, а изложение его содержания ограничивалось последним, седьмым примечанием к нему, содержащим описание его знаменитой космогонической гипотезы без всяких формул и расчетов.

В «Книге первой» Лаплас рассказывает о разных системах календарей, об условиях затмений. О физической природе планет тогда сказать было почти нечего, но движению спутников планет он уделил много места. В главе 13 он говорит о звездах, об их размерах и расстояниях, о которых он выказал правильные догадки, а также о собственных движениях звезд. Большое внимание он уделял их координатам и прецессии. Четыре с половиной страницы посвящены приливам и их вариациям, десять страниц – земной атмосфере и астрономической рефракции, ею вызываемой.

В «Книге второй» Лаплас подробно пишет о суточном и годичном движении Земли, планет, о кометных орбитах, о движении спутников.

«Книга третья» посвящена законам движения и равновесию материальной точки и системы тел, жидкостей и газов.

В «Книге четвертой» центральная глава излагает теорию всемирного тяготения; она содержит 124 страницы. Тут и ее основы, и понятия о возмущениях эллиптического движения планет, комет и спутников всех планет, рассуждения о фигурах планет и законе тяжести на них, о кольцах Сатурна, о либрации Луны, прецессии и нутации земной оси, колебаниях морей и атмосфер, о законе тяготения.

В «Книге пятой» ведется рассказ об истории астрономии. Описав успехи в области астрономических измерений и телескопических наблюдений, достигнутые в XVII и XVIII веках, Лаплас большое внимание уделяет градусным измерениям на Земле, определению размеров Солнечной системы из наблюдения прохождений Венеры по диску Солнца, открытию Урана и трех малых планет, а также усовершенствованию инструментов. Книгу завершают главы об открытии тяготения, о системе мира и перспективах астрономии.

Первая крупная работа Лапласа, напечатнная в 1773 г. касается труднейшего вопроса. Дело идет о примирении теории тяготения Ньютона с неправильностями в движении двух самых крупных планет солнечной системы – Юпитера и Сатурна. Эти неправильности обнаруживались уже давно, но никто не мог дать им точного объяснения, ввести их в рамки известных законов природы.

Ряд последующиих работ Лапласа затрагивает другие важные вопросы небесной механики. Главной целью научной работы Лапласа было доказать, что законом тяготения можно объяснить все движения небесных тел – как те, при изучении которых он был выведен, так и те, которые на первых порах казались противоречащами ему.

При исследовании отклонений в движении планет от законов Кеплера Лапласу приходилось учитывать взаимодействие не двух тел, а трех и даже больше.

Возмущения в движении планет были представлены в классичесской небесной механике формулами, содержащими бесконечные ряды очень сложных членов. Простейшим примером бесконечного ряда членов является известная из алгебры бесконечно убывающая геометрическая прогрессия.

В работе названной «О принципе всемирного тяготения и о вековых неравенствах планет, которые от него зависят» (1773), Лаплас рассматривает замеченное до него явление «беспорядка» в движении гигантских планет. При сравнении древнейших наблюдений с современными выяснилось, что Сатурн двигался с явным замедлением, а Юпитер испытывал ускорение своего движения. В 1773 г. Лаплас применил ряды к исследованию движения Юпитера и Сатурна, пользуясь в усовершенствованной форме методом, предложенным Лагранжем. При это м Лаплас доказал, что Эйлер и Лагранж, вычисляя свои ряды, отбросили такие члены, которые нельзя было отбрасывать, ибо их величина с течением времени становилась не меньше той, какую давали первые члены рядов. Таким образом, Лаплас получил более точные формулы, и когда он подставил их в соответствующие числа для Юпитера и Сатурна, то оказалось, что, благодаря учету новых членов ряда, вековые ускорения для этих планет пропали. Это доказывало, что ускорения, наблюдаемые в движении Юпитера и Сатурна, являются не вековыми, а периодическими, хотя и имеющими, по-видимому, очень длинный период, измеряемый не одним столетием.

Одним из наиболее замечательных исследований Лапласа являлось раскрытие им тайны векового ускорения в движении Луны, не только ставившего в тупик его предшественников, но и угрожавшего, казалось, продолжительному существованию Земли и ее спутника

Луна обращается вокруг Земли по эллипсу, то приближаясь к ней, то удаляясь от нее. Однако это движение под действием земного тяготения только в первом приближении происходит по законам Кеплера. Солнце своим притяжением действует на это движение Луны как возмущающее тело, притом с очень большой силой. Поэтому движение Луны чрезвычайно сложно. Ее движение не только постоянно отклоняется от законов Кеплера, но и сама лунная орбита, как и ее положение в пространстве, непрерывно меняются. Все эти осложнения движения Луны хорошо нам заметны, потому что Луна – ближайшая к нам небесное тело.

В 1787 г. Лаплас нашел наконец окончательное и верное решение вопроса, так долго мучавшего теоретиков и практиков. Лаплас указал причину векового ускорения в движении Луны и теоретически вычислил его величину.

Лаплас убедился, что средняя скорость движения Луны вокруг Земли зависит от эксцентриситета земной орбиты. Движение Луны ускоряется, когда форма орбиты Земли приближается к кругу, и наоборот. Таким образом, вековое ускорение в движении Луны, как и для Юпитера, является не вечным, а периодическим, и настанет время, когда Луна станет двигаться с замедлением.

Разрешением лунной загадки Лаплас устранил последнее важное в его время разногласие между теорией тяготения и наблюдениями. Это был полный и окончательный триумф ньютонианства и небесной механики.

В третьем томе «Небесной механики» Лаплас дал полное и совершенно новое изложение теории Луны, пользуясь которым Берг, а затем и Бургардт составили и издали новые таблицы движения Луны.

Основываясь на формулах Лапласа, его современники и последователи составили намного более точные и очень важные для практической астрономии таблицы движения планет.

Гипотеза Лапласа чрезвычайно убедительно продемонстрировала идею эволюции мировых тел, их естественного и постоянного развития. Она показала, как из более простых форм материи образуются более сложные, показала, что Солнечная система дожна была иметь свою историю во времени и что ее упорядоченность сегодня является необходимым следствием законов, действовавших во Вселенной в далеком прошлом. Простому случаю и потусторонней воле в этой картине мира уже не осталось никакого места, и признание изменяемости Солнечной системы, а с ней и Земли должно было оказать свое влияние на ряд смежных дисциплин.

Если такое влияние гипотезы Лапласа имело место, теория Канта осталась почти незамеченной, то это объясняется не только высоким авторитетом Лапласа в научных кругах. Еще в 1759 г., почти одновременно с Кантом, Вольф впервые попытался указать в биологии на развитие видов и протестовал против теории их неизменности.

Вслед за астрономией идею эволюции должна была воспринять геология, потому что господствовавшая в ней теория катастроф Кювье не объясняла медленных и непрерывных видоизменений того тела, верхними слоями которого занималась геология.

Позже все идеи утвердились в биологии, и то лишь после продолжительной борьбы. Однако лишь Дарвину в 1859 г. удалось утвердить эти идеи, и с тех пор понятие о развитии всех форм природы стало для нас привычным и естестввенным.

В 1974 г. немецкий ученый Фукс обратил внимание на фразу Лапласа, которую можно рассматривать как предсказание существования в космосе объектов, сходных с релятивистскими черными дырами – по крайней мере в том, что из них излучение не может выходить наружу... В 1798 г. Лаплас обосновывает расчетами размеры таких «дыр», которые, по его мнению, должны быть колоссальны.

В 1799 г. Ф. фон Цах опубликовал теорему Лапласа: «Доказательство теоремы о том, что сила притяжения тяжелого тела может быть столь большой, что свет не может истекать от него».

Громоздким для нынешней эпохи методом вычисления параболической скорости на поверхности шара, Лаплас нашел радиус, при котором эта скорость равна скорости света. Значение скорости света Лаплас не привел, а пользовался зависящей от нее величиной постоянной аберрации. Затем он указал, что у звезды, даже не имеющей размеров, которые не позволяли бы ей испускать свет, все же уменьшится скорость испускаемого потока, благодаря чему возрастет величина ее аберрации. Он даже предложил исследовать различие аберрации света у разных звезд, которое следовало из корпускулярной теории света. Будучи тяготеющими частицами, корпускулы света задерживались бы испукающими его массивными звездами. В последующих изданиях своего «Изложения системы мира» Лаплас, однако, это место исключил, возможно, узнав о неизменности величины аберрации для разных звезд.

Итак, подведем итоги и отметим главные заслуги Лапласа. Именно Лапласу наука обязана тем, что космогоническая проблема была переведена, наконец, из области натурфилософских построений в область экспериментально-теоретических исследований.

Лапласу принадлежит и другая заслуга: он сознательно отверг катастрофическую космогонию и ввел или во всяком случае упрочил своим авторитетом фундаментальную идею одновременнности или по меньшей мере взаимосвязанности процессов образования Земли и других планет, с одной стороны, и центральной звезды, Солнца, – с другой. Именно эта идея отвечает представлению о закономерном, неслучайном появлении планетных систем во Вселенной.

Наконец, Лаплас несравненно более детально и обоснованно, нежели Кант, использовал в космогонии по существу «гравитационную неустойчивость» как основной для космогонии эффект, возникающий в результате взаимодействия ряда физических причин: у Лапласа это остывание и гравитационное сжатие протопланетной туманности и нарушение равновесия центробежных и гравитационных сил на определенных расстояниях от центра тяготения – Солнца.

Все эти направления (а не конкретное, упрощенное, чисто механическое объяснение формирования планет в газовых кольцах) оказались главными направлениями развития современной космогонии.

В заключение, отметим, что обилие непрерывно поступающей в наши дни новой информации о Космосе и его отдельных объектах оказывается все еще не достаточным для решения проблемы космогонии в целом.

В наши дни все более существенной становится связь космогонии с геологией и другими науками о Земле, с аналогичным непосредственным исследованием других планет с помощью космических лабораторий, т. е. с планетологией вообще. Действительно, что было известно о планетах при их наблюдении лишь с Земли, вплоть до 70-х годов нашего века? Их массы, средние плотности, не всегда правильное представление об их атмосферах и облаках в них. О рельефе, кроме разве что лунном, не было известно ничего. Интерпретация же картины, видимой в телескоп, оказывалась нередко совершенно ошибочной (пример тому – ошибочное представление о Марсе, якобы покрытом растительностью!). В последние 2 десятилетия исследования с космических аппаратов принесли совершенно неожиданные сведения о планетах, особенно неожиданные в отношении планет земной группы, казалось бы, более или менее сходных с Землей. Поверхность Венеры оказалась раскаленной до многих сотен Кельвинов, атмосфера ее – насыщенной ядовитыми сернистыми парами. Поверхности всех этих планет и практически всех спутников оказались густо покрытыми кратерами, наподобие лунных, прежде всего явно ударного, метеоритного происхождения. Но и наличие вулканических кратеров, существование которых давно подозревалось на Луне, подтвердилось непосредственным наблюдением с космических станций «Вояджер» извергающихся вулканов на спутнике Юпитера Ио. С полдюжины вулканов во время пролета станции извергали на сотни километров в высоту пламя, дым, изливали потоки сернистой лавы.

Все это говорит о наличии высокой температуры в недрах планет и даже их спутников. Новые данные о составе Луны – в десять раз большее содержание в ее породах радиоактивных элементов, – видимо, подтверждает идею Вернадского – Шмидта о разогреве недр планет за счет распада таких элементов. Невольно приходит мысль, а не могла ли в таком случае с какой-либо планетой (еще в эпоху образования ее коры) произойти ядерная катастрофа – взрыв, породивший все многообразие мелких тел в Солнечной системе... Правда, подобное заключение о возможности самопроизвольного ядерного взрыва небесного тела типа планеты не имеет пока достаточных физических оснований.

Во всяком случае, ясно, что и геология (планетология), и геохимия наших дней задают космогонистам новые и новые загадки.

При разработке космогонических гипотез требуют учета и новые сведения о, казалось, уникальной детали в Солнечной системе – кольце Сатурна. Прежде всего оно оказалось не уникальной деталью; сейчас обнаружены кольца вокруг Юпитера и Урана, хотя и значительно более тонкие и узкие. Да и представления о кольцах Сатурна уточнились.

Особый интерес представляет тонкая и сверхтонкая структура колец, состоящих из сотен тысяч «колечек» шириной от нескольких до десятков километров и сгруппированных в кольца шириной в сотни и тысячи километров.

При наблюдениях с Земли эта сложная система колец сливалась в несколько сплошных, хорошо знакомых земным наблюдателям.

Такая структура колец не может быть объяснена резонансным влиянием спутников Сатурна. Большинство исследователей считает, что расслоение на узкие кольца всего диска произошло вследствие диффузных процессов, вызванных неупругими столкновениями частиц.

Интересно, что Кант еще в 1755 г. предсказал, что разреженный, но все же «столкновительный» диск будет дробиться на узкие концентрические «колечки». Лаплас тоже, по некоторым источникам, был уверен, что «кольцо Сатурна сложено из многих колец, лежащих примерно в одной плоскости» *).

Каждая частица в кольце Сатурна сталкивается с соседними однажды за несколько часов с относительными скоростями 1-2 мм/с. Это примерно скорость земной улитки. Несмотря на маленькие скорости движения, при столкновении частиц в зоне контакта лед разрушается, и за достаточно короткое время (около 30 тыс. лет) ледяные глыбы должны были бы превратиться в пыль. Крупные же частитцы в кольцах Сатурна сохраняются вследствие накопления на их поверхности частиц мелкораздробленного льда, который примерно за 1000 лет образует слой толщиной в несколько миллиметров, как рассчитал молодой московский астроном Н. Н. Гарькавый.

Рыхлый поверхностный слой делает практически совершенно неупругим столкновение частиц и предохраняет их от дальнейшего разрушения. Инфракрасные наблюдения подтверждают наличие на поверхности частиц слоя мелкораздробленного льда, как заметил М. С. Бобров и другие еще в 70-е годы...

Все эти результаты показывают, что еще не одному поколению ученых предстоит поломать головы над этими едва ли не самыми важными проблемами для человечества: откуда мы? И как возник наш, такой небольшой в масштабах звездной и внегалактической Вселенной и такой сложный в смысле качественного развития материи, которое достигло здесь высшей формы – жизни и разума, – планетный мир? Повторим же вслед за великим Лапласом его последние слова: «Наука неисчерпаема, как и природа...»


написать администратору сайта