Главная страница
Навигация по странице:

  • 1.5. Прийом сигналів з OFDM

  • 1.6 Стандарт IEEE 802.11а

  • 1.7 Загасання і інтерференція

  • 1.8.Методи модуляції OFDM – сигналу,зворотне дискретне перетворення Фурє.

  • 1.9. Моделі каналів розповсюдження OFDM -сигналів

  • Параметри моделі каналу Channel B

  • 1.10. Параметри, що характеризують завадостійкість радіотрактів багаточастотних широкосмугових сигналів

  • 1.11. Імітаційний метод оцінки завадостійкості

  • 1.12. Постановка задачі дослідження

  • Висновки до розділу

  • РОЗДІЛ 2 РОЗРОБКА ІМІТАЦІЙНОЇ МОДЕЛІ

  • Перелік умовних скорочень 3ghf (3 Generation Huge Frequency) широкосмугові короткохвильові радіостанції 3 покоління


    Скачать 1.38 Mb.
    НазваниеПерелік умовних скорочень 3ghf (3 Generation Huge Frequency) широкосмугові короткохвильові радіостанції 3 покоління
    АнкорDiplom Simoroz.docx
    Дата11.08.2018
    Размер1.38 Mb.
    Формат файлаdocx
    Имя файлаDiplom Simoroz.docx
    ТипДокументы
    #22799
    страница3 из 6
    1   2   3   4   5   6

    1.4.Формування сигналів з OFDM
    Однією з переваг класичних сигналів з OFDM є використання при їх формуванні та прийомі методів дискретного перетворень Фур'є. Це істотно спрощує практичну реалізацію приймально-передавальних трактів радіомодемів. При формуванні сигналів з OFDM цифровий потік інформаційних символів надходить на блок завадостійкого кодування, з виходу якого канальні символи подаються на модулятор сигналів (Мал. 6). Модулятор сигналів проводить перетворення канальних символів двійкового алфавіту в комплексні модуляційні символи у відповідності з обраним законом маніпуляції. Далі отримані символи надходять на перетворювач послідовного потіку даних в паралельний. Формування группо вого сигналу в цифровому вигляді здійснюється за допомогою зворотного (швидкого) дискретного перетворення Фур'є.На цьому етапі здійснюється додавання в груповий сигнал пілотних піднесучих , які використовуються для оцінки параметрів каналу. Перетворення сигналу в аналогову форму проводиться за допомогою ЦАП.

    Спектр дискретного сигналу є періодичною функцією за період, рівний частоті дискретизації Fs. Відновлення аналогового сигналу здійснюється за допомогою ЦАП і фільтра нижніх частот (ФНЧ) із смугою пропускання ∆F. Амплітудно-частотна характеристика ФНЧ повинна бути плоскою в області основної пелюстки спектру сигналу з OFDM і швидко спадати поза основної пелюстки, щоб ефективно подавити копії спектра дискретного сигналу.


    Мал. 6. Узагальнена структурна схема пристрою формування

    сигналів з OFDM
    У реальних умовах апаратура формування сигналів з OFDM включає в себе блоки завадостійкого кодування, перемежения, блоки тактовою і циклової синхронізації, блоки введення захисного інтервала та ін. Так, наприклад, при побудові апаратури формування сигналів з OFDM в стандарті IEEE 802.11а-205 в режимі WirelessLAN, використовуються наступні параметри:

    - Кількість точок ОБПФ N = 256;

    - Число використовуваних частот, 200 (192 інформаційних піднесучих і 8 піднесучих для пілот-сигналів);

    - Частота дискретизації Fs і тривалості сигналу Т визначаються з табл. 2.
    Таблиця 2.Параметри сигналу з OFDM в стандарті IEEE 802.16е-2005 для різних значень

    , МГ ц

    1,75

    3,5

    7

    14

    28

    Fs, МГц

    2

    4

    8

    16

    32

    T = N/ Fs, мкс

    128

    64

    32

    16

    8



    1.5. Прийом сигналів з OFDM
    Основним блоком пристроїв прийому сигналів з OFDM є цифровий блок дискретного (швидкого) перетворення Фур'є. Застосування БПФ істотно спрощує практичну реалізацію прийомних трактів радіомодемів. На Мал. 7 наведена узагальнена структурна схема пристрою прийому сигналів з OFDM. На цій схемі вхідний сигнал надходить на змішувач, в якому здійснюється перенесення спектра сигналу в основну смугу частот, далі сигнал подається на ФНЧ з смугою пропукания ∆F і перетвориться в цифровий вигляд за допомогою АЦП. У цифровій частині приймача виконуються процедури тактовою та фазової синхронізації, корекції передавальної характеристики каналу (еквалайзер), демодуляціі і декодування. У бездротових системах передачі даних для реалізації тактової синхронізації застосовується преамбула - сигнал з OFDM з повністю відомими параметрами і хорошими автокореляційними властивостями. Також на етапі тактової синхронізації здійснюеться корекція можливого зсуву сигналу по частоті. Наявність блоку видалення частотного зсуву обов'язкова, тому що сигнали з OFDM чутливий до помилок неортогональності, що виникають унаслідок зсуву сигналу по частоті.



    Мал. 7. Узагальнена структурна схема пристрою прийому сигналів

    з OFDM
    У приймачі, показаному на Мал. 7, реалізується когерентний алгоритм прийому сигналів з OFDM, який забезпечується формуванням всередині блоку БПФ когерентних опорних коливань на кожній піднесучій, паралельного множення вхідного сигналу на опорні коливання і інтегрування творів на тривалості сигналу. Всі зазначені операції здійснюються всередині блоку БПФ , на вихід блоку надходять результати інтегрування (підсумовування) для кожної піднесучої. Таким чином, когерентний прийом сигналів з OFDM з прямокутною обвідною в дискретній формі здійснюється на основі алгоритму швидкого перетворення Фур'є. Маємо:



    Де - Тимчасові відліки сигналу на виході ЦАП, Сп - вихід суматора на n-нній піднесучій в момент часу, відповідний закінченню сигналу. Таким чином, всі дії з реалізації когерентного прийому сигналів з OFDM здійснюються в блоці ШПФ паралельно. Блок БПФ реалізує банк корреляторів, кожен з яких налаштований на певну піднесучу.

    Фазова синхронізація і корекція передавальної характеристики каналу здійснюється в еквалайзері на основі пілотних піднесучих . Пілотні піднесучі являють собою спеціально виділені частоти, рівномірно розподілені в смузі займаних частот, на яких передається заздалегідь відома інформація. На основі аналізу принятих і переданих символів на пілотних піднесучих можна оцінити комплексний коефіцієнт передачі каналу і зсув фази на цих частотах і далі вирішити завдання інтерполяції передавальної характеристики каналу у всій смузі займаних частот.

    В демодуляторі здійснюється перетворення отриманих комплексних модуляційних символів у канальні символи довічного алфавіта. Канальні символи надходять на блок декодера завадозахищеного коду і далі до одержувача повідомлень.
    1.6 Стандарт IEEE 802.11а
    Технологія побудови радіоканалу на основі мультиплексування з ортогональним поділом частот була реалізована в стандарті IEEE 802.11а. Діапазон частот в сигналі OFDM складається з двох частотних смуг загальною шириною 300 МГц. Перша смуга 5,15-5,35 ГГц, друга - 5,725-5,825 ГГц. При цьому перша смуга розділена на дві 100-МГц частини. Таким чином, для передачі використовується три 100-МГц які не перекриваються, кожен з яких передбачає різні обмеження на потужність: 50 мВт в «нижньому», 250 мВт в «середньому» і до 1 Вт в «верхньому». Стандарт 802.11а наказує перехід на метод кодованого ортогонального частотного мультиплексування, швидкість передачі даних досягає 54 Мбіт / с. Робота з такою швидкістю можлива завдяки розбиттю одного «швидкого» 20-МГц каналу на 52 «повільних» 300-кГц несучих. Існуючі специфікації дозволяють одночасно працювати тільки одному пристрою (котрі використовують всі 52 несучих). У стандарті визначено три обов'язкові швидкості передачі даних (6, 12 і 24 Мбіт / с) і п'ять додаткових (9, 18, 24, 48 і 54 Мбіт / с). Є можливість одночасного використання двох каналів, швидкість при цьому подвоюється.Внаслідок складності виробництва більш високочастотного обладнання, реальний випуск пристроїв стандарту 802.11a почався тільки наприкінці 2001р. Відповідно до правил FCC частотний діапазон UNII розбитий на три 100-мегагерцевого піддіапазону, що розрізняються обмеженнями по максимальній потужності випромінювання. Нижчий діапазон (від 5,15 до 5,25 ГГц) передбачає потужність всього 50 мВт, середній діапазон (від 5,25 до 5,35 ГГц) - 250 мВт, а верхній діапазон (від 5,725 до 5,825 ГГц) - 1 Вт. Використання трьох частотних піддіапазонів із загальною шириною 300 МГц робить стандарт 802.11а самим, так би мовити, широкосмуговим з сімейства стандартів 802.11 і дозволяє розбити весь частотний діапазон на 12 каналів, кожен з яких має ширину 20 МГц, вісім з яких лежать в 200-мегагерцовому діапазоні від 5,15 до 5,35 ГГц, а решта чотири канали - у 100-мегагерцовому діапазоні від 5,725 до 5,825 ГГц. При цьому чотири верхніх частотних каналів, що передбачають найбільшу потужність передачі, використовуються переважно для передачі сигналів поза приміщеннями.

    Передбачена протоколом 802.11а ширина каналу 20 МГц цілком достатня для організації високошвидкісної передачі. Використання ж частот понад 5 ГГц і обмеження потужності передачі призводять до виникнення ряду проблем при спробі організувати високошвидкісну передачу даних, і це необхідно враховувати при виборі методу кодування даних.
    1.7 Загасання і інтерференція
    Поширення будь-якого сигналу неминуче супроводжується його загасанням, причому величина загасання сигналу залежить як від відстані від точки передачі, так і від частоти сигналу. При вимірюванні в децибелах величини загасання сигналу користуються формулою:

     стандарт ieee 802.11а,

    де: X - коефіцієнт ослаблення, рівний 20 для відкритого простору, d - відстань від точки передачі, f - частота сигналу, с - швидкість світла.

    З цієї формули безпосередньо випливає, що зі збільшенням частоти переданого сигналу збільшується і його затухання. Так, при поширенні сигналу у відкритому просторі з частотою 2,4 ГГц він слабшає на 60 дБ при видаленні від джерела на 10 м. Якщо ж частота дорівнює 5 ГГц, слабшанню сигналу при видаленні на 10 м складе вже 66 дБ. Враховуючи, що правила FCC диктують використання істотно меншої потужності випромінювання в нижніх піддіапазонах UNII, ніж в діапазоні ISM 2,4 ГГц, стає зрозуміло, що використання більш високих частот у протоколі 802.11а призводить до дещо меншому радіусу дії мережі, ніж в протоколі 802.11b , що представляє собою розширення базового стандарту IEEE 802.11, який припускав можливість передачі даних по радіоканалу на швидкості 1 Мбіт / с і опціонально на швидкості 2 Мбіт / с (у стандарті IEEE 802.11b були вже додані більш високі швидкість передачі - 5,5 і 11 Мбіт / с. Стандартом IEEE 802.11b передбачено використання частотного діапазону від 2,4 до 2,4835 ГГц, який призначений для безліцензійного використання в промисловості, науці та медицині).

     Тепер розглянемо інтерференцію. У точці прийому результуючий сигнал являє собою суперпозицію багатьох сигналів з різними амплітудами і зміщеними відносно один одного за часом, що еквівалентно додаванню сигналів з різними фазами. Якщо припустити, що передавач поширює гармонійний сигнал:

    yin=Asin(2vt)

    з частотою несучої ν і амплітудою A, то в приймачі буде отриманий сигнал:

    стандарт ieee 802.11а, продолжение,

    де ti - затримка поширення сигналу по i-му шляху

    Найбільш негативно на спотворенні сигналу позначається міжсимвольні інтерференція. Оскільки символ - це дискретне стан сигналу, що характеризується значеннями частоти несучої, амплітуди і фази, то для різних символів змінюються амплітуда і фаза сигналу, тому відновити вихідний сигнал вкрай складно.

    1.8.Методи модуляції OFDM – сигналу,зворотне дискретне перетворення Фур'є.
    OFDM модуляція передбачає використання ряду ортогональних піднесучих , модуляція яких здійснюється комплексними інформаційними символами. Введемо інтервал часу, на якому поднесущие будуть ортогональними. Ортогональность забезпечується умовами:



     ,

    Комплексний інформаційний модулюючий символ має вигляд:

    ,
       - - Амплітуда символу, - фаза символу, n = 0, 1, 2, 3, ..., (N-1).

    Безперервний сигнал на інтервалі часу, що складається з N піднесучих , модульованих символами:



    де - частота n - ної піднесучої.

    Таким чином, для забезпечення ортогональності модульованих піднесучих , достатньо виконання умови:

     .

    Перейдемо від безперервного сигналу до дискретного:

    t=kT, k=0, 1, 2, 3 , …, (N-1).

    Період дискретизації виберемо з умови:

    Tu/T = N.

    В результаті отримаємо форму сигналу:

    ,

    де - значення сигналу в момент часу kT.

    Таким чином ми перейшли від безперервної форми опису OFDM - сигналу до дискретного. Отриманий вираз являє собою дійсну частину зворотного дискретного перетворення Фур'є. У збудниках ОДПФ здійснюється в комплексній формі, тому наш сигнал набуває вигляду:

     .

    Розкриємо цей вираз, попередньо опустивши коефіцієнт 1 / N. В результаті отримаємо систему з N рівнянь, кожне з яких з точністю до постійного коефіцієнта визначає значення сигналу в момент часу (kT):



     Дана система рівнянь відображає процес модуляції піднесучої інформаційними символами. При цьому:

    • Кожен символ модулює тільки одну поднесущую;

    • У формуванні кожного відліку беруть участь всі символи;

    • Процеси формування піднесучих і їх модуляції в рамках ОДПФ суміщені.

    Для того щоб цей вид модуляції був застосуємо на практиці, а саме можна було як передавати так і приймати сигнал сформований таким чином, покажемо що його можна демодулювати. При цьому будемо вважати, що в приймальному пристрої на основі прийнятого сигналу сформовані відліки. Застосуємо до них пряме дискретне перетворення Фур'є:

    .

    Розкриємо отриманий вираз. В результаті отримаємо систему з N рівнянь, кожне з яких визначає значення комплексного інформаційного символу:



    Аналіз цієї системи рівнянь показує, що виділення кожного символу реалізується шляхом інтегрування на інтервалі часу Tu твори комплексного значення OFDM-сигналу на певну комплексну експоненту і стає можливим завдяки ортогональності системи.

    Таким чином ми показали можливість демодуляції OFDM - сигналу, смодулірованнго за допомогою ОДПФ. Тепер перетворимо формулу модуляції, виділивши дійсну і уявну частини:



    За цією формулою і будемо здійснювати модуляцію з використанням емпіричних функцій синуса і косинуса.

    У формулі по якій ми здійснюємо даний метод модуляції присутні тригонометричні функції sin () і cos (). Комп'ютер обчислює їх шляхом розкладання в ряд і внаслідок це займає багато часу. Розглянемо інші методи обчислення тригонометричних функцій на прикладі синуса. Якщо обчислювати синус звичайним оператором sin (), то це дає точний результат. Таким методом зручно користуватися, якщо значення синуса потрібно обчислити один або кілька разів. Якщо ж синус доводиться рахувати багато разів, то буде зручно скористатися іншим методом, який буде витрачати менше часу. Суть методу полягає в тому, що спочатку вираховуються значення синуса аргументів, які беруться з невеликим інтервалом. Ці значення запам'ятовуються. А потім, коли нам потрібно обчислити синус, то ми із заповнених значень відшукуємо те значення, яке відповідає аргументу, найбільш наближеному до того, який потрібно порахувати. При цьому може утворитися похибку. Вона буде тим менше, чим менше ми будемо вибирати крок, з яким вважалися значення синуса для запам'ятовування. Ще один метод обчислення синуса - за допомогою розкладання в ряд Маклорена.

    Уявімо функцію синуса у вигляді перших двох членів розкладання ряду Маклорена:



    Для того, щоб знайти коефіцієнти і спочатку візьмемо похідну цієї функції і знайдемо точки екстремумів, потім прирівняємо значення функції в точках, відповідних максимуму, - одиниці, як максимальному значенню синуса:



    Для того щоб знайти коефіцієнти і потрібно ще одне рівняння. Підставами у вихідне розкладання синуса і прирівняємо до к :.



    Виходить система рівнянь:



    Вирішуючи цю систему, отримаємо:



    Таким чином, синус в діапазоні від 0 до можна вважати за формулою:

    sin(x)=x(0.99904-0.16037x)

    Аналогічно можна зробити і для косинуса:

    cos(x)=0.99809-0.4749x

    1.9. Моделі каналів розповсюдження OFDM-сигналів
    Канал з адитивним білим гаусовим шумом. Адитивний білий гаусів шум (АБГШ, англ. Additive white Gaussian noise, AWGN) - вид білого шуму, що заважає в каналі передачі інформації.

    Характеризується рівномірною спектральню щільністю, нормально розподілленням значенням амплітуди і адитивним способом впливу на сигнал. Найбільш поширений вид шуму, який використовується для розрахунку і моделювання систем радіозв'язку. Термін «адитивний» означає, що даний вид шуму підсумовується з корисним сигналом. На противагу адитивному, можна вказати мультиплікативний шум - шум, який перемножується з сигналом.

    Широкосмуговий шум випромінюється від багатьох природних джерел, таких як теплові коливання атомів в провідниках (теплові шуми або шуми Найквіста),  дробовий шум, випромінювання абсолютно чорного тіла від землі та інших теплих об'єктів, і з небесних джерел, таких як Сонце. Центральна гранична теорема з теорії ймовірностей означає, що підсумовування багатьох випадкових процесів буде мати тенденцію до гауссівского або звичайного розподілу.

    AWGN часто використовується як модель каналу, в якому погіршення у зв'язку являє собою лінійне додавання  білого шуму з постійною спектральною щільністю (вираженої як ват в герцах від пропускної здатності) із гаусовим розподілом амплітуди.

    Модель не враховує завмирання, частотну селективність, інтерференцію, нелінійність або дисперсію.

    Тим не менш, він виробляє прості і податливі математичні моделі, які корисні для отримання розуміння основної поведінки системи, перш ніж ці інші явища розглядаються.

    Канал АБГШ є гарною моделлю для багатьох супутникових ліній зв'язку та ліній зв’язку для далекого космосу. Це не дуже хороша модель для більшості наземних ліній зв’язку через багатопроменевість, блокування місцевості, інтерференції і т. д. Проте, при моделюванні таких ліній, AWGN зазвичай використовується для імітації фонового шуму каналу в стадії вивчення, на додаток до явищ багатопроменевості, блокування місцевості, інтерференції, шумів землі і само втручання, з якими сучасні радіо системи можуть зіткнутися.

    Пропускна здатність каналу. Канал АБГШ представлений серією виходів  на індекс подій дискретного часу i.  є сумою вхідного сигналу і шуму, , де  є незалежні і однаково розподілені  взяті з нульового середнього нормального розподілу з дисперсією н (шум).  Далі планується не корелювати з :






    Пропускна здатність каналу нескінченна, якщо шум n не дорівнює нулю, і  в достатній мірі обмежені. Найбільш поширеним обмеженням на вході є таке обмеження, при якому для кодового слова , переданого через канал, маємо:



    де  являє собою максимальну потужність каналу. Таким чином, пропускна здатність каналу для каналу з обмеженою потужністю визначається за формулою:




    де це функція розподілу . Запишемо , в термінах диференціальної ентропії. Диференціальна ентропія - частина ентропії джерела безперервних повідомлень, яка залежить від щільності ймовірності сигналу, що видається джерелом:




    Але  і   незалежні, тому:



    Оцінюючи диференціальну ентропію як  гауссову маємо:




    Тому  і   незалежні і їх сума дає :



    За цією оцінкою, з властивості диференціальної ентропії випливає, що




    Тому пропускна здатність каналу задається максимально можливою границею взаємної інформації:




    Де   максимізує, коли:



    Таким чином, пропускна здатність каналу  для каналу з AWGN визначається за формулою:




    Існує ряд моделей каналів, стандартизованих і рекомендованих до застосування при моделюванні систем рухомого зв'язку. Широке поширення отримали моделі, рекомендовані Міжнародним Союзом Електрозв'язку (ITU) , такі як Channel model A, B, C та D.

    Данні моделі розробленні для перевірки та визначення параметрів обладнання, але на відміну від таких же моделей 3GPP, націлені на мережевих проектувальників для побудови системи та перевірки працездатності. Оскільки не має сенсу для побудови моделей всіх можливих варіантів середовищ розповсюдження, МСЕ запропонувало набір тестових середовищ, що адекватно обхоплює загальний діапазон можливої експлуатації середовища та мобільність користувача.

    У Табл.3 та Табл.4 наведені основні параметри для моделі каналу рухомого зв'язку Channel A та B.

    Моделі мають 6 променів із заданими затримками і потужностями. Завмирання в каналі мають релеєвский розподіл, а доплерівська частота залежить від швидкості руху абонента.
    Табл.3

    Параметри моделі каналу Channel A

    Промінь

    Затримка, нс

    Середня потужність, дБ

    1

    0

    0.0

    2

    310

    -1.0

    3

    710

    9.0

    4

    1090

    10.0

    5

    1730

    15.0

    6

    2510

    20.0


    Табл.4

    Параметри моделі каналу Channel B

    Промінь

    Затримка, нс

    Середня потужність, дБ

    1

    0

    -2.5

    2

    300

    0

    3

    8910

    -12.8

    4

    12900

    -10.0

    5

    17100

    -25.2

    6

    20000

    -16.0


    Моделі каналу Channel A та B використовуються для моделювання закритих(офіси, робочі приміщення, тощо) та відкритих(великі площі з можливим пересуванням значних мас людей) середовищ передачі, моделі C і D призначенні для розгляду каналу в середовищі швидкого переміщення абонентського терміналу(авто-, мототехніка, авіація, громадський транспорт).

    1.10. Параметри, що характеризують завадостійкість радіотрактів багаточастотних широкосмугових сигналів
    Завадостійкість - здатність обладнання функціонувати за призначенням без погіршення його роботи за наявності електромагнітних завад. Серед параметрів, що характеризують завадостійкість радіотрактів багаточастотних широкосмугових сигналів слід виділити відношення сигнал/шум та ймовірність помилки прийому сигналу.

    Співвідношення сигнал/шум (ССШ або ВСШ, англ. SNR або S/N, Signal-to-noise ratio, рос. Отношение сигнал/шум) — міра, що застосовується в науці та інженерії для визначення наскільки сильно сигнал спотворений шумом. Визначається як відношення потужності корисного сигналу до потужності шуму. Співвідношення вище ніж 1:1 вказує, що сигнал більший за шум. Хоча SNR переважно стосується електричних сигналів, він може бути застосований до будь-яких видів сигналу (наприклад, для біохімічного сигналізування між клітинами).

    Іншими словами, співвідношення сигнал/шум порівнює рівень бажаного сигналу (для прикладу, музики) та рівень фонового шуму. Чим більше SNR тим менш помітний фоновий шум.

    Співвідношення сигнал/шум визначається як відношення потужності сигналу (значимої інформації) до потужності фонового шуму (небажаного сигналу) , де P середня потужність. Сигнал і шум обидва повинні бути виміряні в тій же або еквівалентній точці в системі, в межах однієї і тої ж смуги пропускання системи.

    Для кількісної оцінки впливу перешкод та інших факторів, що викликають відміну прийнятої послідовності від переданої, вводиться критерій оцінки якості прийнятої інформації. При передачі дискретних повідомлень за такий критерій приймають ймовірність помилки прийому одного елемента двійковій послідовності. 

    Середня ймовірність помилки визначається за формулою: 
    .

    Імовірність помилки залежить: від виду модуляції, способу детектування (когерентний, некогерентний), способу фільтрації сигналів в приймачі (оптимальний фільтр, неоптимальний фільтр), потужності Pc (енергії Ec) сигналу, потужності Pп (спектральної щільності N0) перешкоди. Якщо в приймачі використовується неоптимальний фільтр, ймовірність помилки залежить від величини відношення потужності сигналу до потужності перешкоди (відношення сигнал/шум по потужності) h2 = Pс/Pп

    При використанні в приймачі оптимального фільтра ймовірність помилки визначається величиною відносини енергії елемента сигналу до спектральної щільності потужності перешкоди: 

    .

    У приймачі з оптимальним фільтром відношення сигнал / шум більше, ніж в приймачі з неоптимальним фільтром і, відповідно, завадостійкість вище. 

    Приймач з оптимальним фільтром і когерентним способом прийому забезпечує потенційну перешкодостійкість для заданого виду модуляції. 
    1.11. Імітаційний метод оцінки завадостійкості
    Під аналізом в режимі реального часу мається на увазі, що аналіз даних здійснюється відразу ж після їх збору в тому ж додатку. Якщо програма повинна виконувати якісь дії в залежності від зміни параметрів сигналу, отже, необхідно проводити аналіз даних відразу після отримання. Аналізуючи зміни сигналу, можна змінювати поведінку програми у відповідності з ними, наприклад, зберігати певні дані на диск або міняти частоту оцифровки, а також виконувати функції автоматичного керування. Це лише кілька прикладів, на ділі ж існують тисячі додатків, в яких потрібна та чи інша ступінь “інтелектуальності” і здатності приймати рішення в залежності від різних умов – адаптованості. Все це можна реалізувати тільки шляхом вбудовування алгоритмів аналізу в програму.

    Зазвичай рішення, засновані на результатах вимірів, приймаються в автоматичному режимі, тобто в програму вбудовується логіка роботи в певних умовах. Наприклад, система автоматизації на виробництві може включити світлову індикацію, коли температура піднімається вище заданого порогу. Однак автоматичний режим прийняття рішення підходить не для всіх додатків. Дуже часто необхідно особисто контролювати процес виконання програми, щоб уникнути ситуацій, коли користувачі зберігають дані у файли або базу даних, а потім витягують і аналізують їх лише для того, щоб виявити помилки і скоригувати процес збору. У таких випадках застосування повинне надати користувачеві зібрані і оброблені дані в максимально зручному для сприйняття вигляді.

    Незалежно від методу аналізу, програми надають користувачеві набори математичних функцій і функцій аналізу, які природним чином взаємодіють з функціями збору даних і відображення інформації. При цьому користувач позбавлений від необхідності конвертації даних з одних форматів в інші, що вимагається при роботі з декількома різними інструментами збору та аналізу даних. Крім цього, є можливість проведення аналізу по точкам – методу, найбільш відповідного для додатків, що працюють в режимі реального часу.

    Більшість середовищ розробки не дозволяють вести одночасно і збір даних та їх відображення в одному додатку. Типовий продукт – це або мова програмування загального призначення з мінімумом бібліотек для обробки сигналів, придатний в основному для розробки додатків по збору даних, або середу з величезною кількістю інструментів для аналізу сигналів, але обмеженою підтримкою роботи з обладнанням. У результаті доводиться витрачати час на конвертацію та передачу даних з однієї програми в іншу.
    Функції які повинна виконувати програма:

    • спектральні вимірювання

    • виміри спотворень

    • тональні вимірювання

    • вимірювання амплітуди та рівня

    • вимірювання перехідних процесів

    • апроксимація кривих

    • статистика

    • згортка та кореляційні функції

    • імітація та моделювання сигналів

    • маскування і обмеження

    • згладжування і пере дискретизація

    MATLAB, Simulink і продукти для обробки сигналів дозволяють аналізувати сигнали, що надходять з інструментів та інших джерел даних. У цих продуктах реалізовано повноцінне середовище для отримання сигналу, аналізу, обробки, візуалізації і розробки алгоритму. Пропоновані підходи до вирішення завдань легко освоїти: розробник не зобов'язаний бути фахівцем в області цифрової обробки сигналів.

    Продукти MathWorks дозволяють отримувати та обробляти сигнали в єдиному середовищі. Сигнали в реальному часі надходять в робоче середовище безпосередньо з підключених осцилографів, генераторів функцій і інших сумісних з персональним комп’ютером апаратних засобів і інструментів для тестування і вимірювань.

    За допомогою вбудованих засобів можна проводити аналіз характеристик отриманих сигналів і використовувати різні варіанти візуалізації: графіки у часовій і частотній області, двовимірні та тривимірні графіки, об'ємні уявлення та ін..

    Вбудовані бібліотеки дозволяють досліджувати ідеї і тестувати їх реалізацію в системі обробки сигналів. Для цього в них реалізована вся необхідна функціональність: перетворення сигналу, віконні функції, швидкісні і статистичні операції обробки сигналу, методи розробки фільтрів. Завдяки цим бібліотекам стає можливим прискорення ітерацій розробки, оптимізація швидкодії та точності, вибір кращого алгоритму для системи.

    Для вирішення складних завдань, які зачіпають різні сфери інженерної діяльності, розробник може застосувати алгоритми обробки зображень, статистики, управління та бібліотеки сучасних чисельних обчислень.

    Після розробки алгоритму для цифрової обробки сигналів можна негайно надати його кінцевому користувачеві, не переписуючи код на інші мови програмування.

    MATLAB Compiler™ дозволяє створювати з додатків MATLAB незалежні виконувані модулі або спільні бібліотеки. При цьому кінцевий користувач може запускати додаток поза середовища MATLAB. Таким чином можна заощадити час розробника, не переписуючи код алгоритму на інші мови програмування.

    Системи зв’язку MATLAB, Simulink і спеціальні інструменти для систем зв’язку надають відкрите розширюване середовище моделювання, взаємозв’язок з обладнанням третіх виробників і засоби для розробки C / C++ і HDL коду.

    Інженери працюють в середовищі розробки і моделювання яка:

    - Надає великий набір інструментів для розробки алгоритмів і дослідження архітектури виробів

    - Дозволяє спільно працювати співробітникам займаються різними напрямками

    - Сприяє інтеграції зі старим кодом і обладнанням третіх виробників

    - Дозволяє проводити швидку верифікацію моделі і алгоритмів протягом всього циклу розробки

    Програма Simulink є додатком до пакету MATLAB. При моделюванні з використанням Simulink реалізується принцип візуального програмування, відповідно до якого, користувач на екрані з бібліотеки стандартних блоків створює модель пристрою і здійснює розрахунки.

    При цьому, на відміну від класичних способів моделювання, користувачеві не потрібно досконально вивчати мову програмування і чисельні методи математики, а досить загальних знань потрібних при роботі на комп’ютері і знань тієї предметної області, в якій він працює.

    Simulink є досить самостійним інструментом MATLAB і при роботі з ним зовсім не потрібно знати сам MATLAB і інші його додатки. З іншого боку доступ до функцій MATLAB і іншим його інструментам залишається відкритим і їх можна використовувати в Simulink. Частина входять до складу пакетів які мають інструменти, що вбудовуються в Simulink (наприклад, LTI-Viewer програми Control System Toolbox – пакету для розробки систем управління). Є також додаткові бібліотеки блоків для різних галузей застосування (наприклад, Power System Blockset – моделювання електротехнічних пристроїв, Digital Signal Processing Blockset – набір блоків для розробки цифрових пристроїв і т.д).

    При роботі з Simulink користувач має можливість модернізувати бібліотечні блоки, створювати свої власні, а також складати нові бібліотеки блоків.

    При моделюванні користувач може вибирати метод розв'язання диференціальних рівнянь, а також спосіб зміни модельного часу (з фіксованим або змінним кроком). У ході моделювання є можливість стежити за процесами, що відбуваються в системі. Для цього використовуються спеціальні пристрої спостереження, які входять до складу бібліотеки Simulink. Результати моделювання можуть бути представлені у вигляді графіків або таблиць.

    Перевага Simulink полягає також у тому, що він дозволяє поповнювати бібліотеки блоків за допомогою підпрограм написаних як мовою MATLAB, так і на мовах С, Fortran і Ada.

    Практична стійкість передачі інформації в каналах з шумами і перешкодами залежить від вибору канальних сигналів і від типу коригувальних кодів. Завадостійкість каналу передачі від інформаційного потоку на вході до вихідного потоку у споживача інформації зазвичай називають наскрізною. Навіть при простих моделях передачі виникає багато обчислювальних труднощів визначення кривих наскрізний завадостійкості. Особливо великі труднощі при складанні формул розрахунку наскрізних кривих виникають при використанні багатоступеневих каскадних кодів. Для подолання розрахункових труднощів хорошим засобом є моделювання в середовищі MATLAB, Simulink. Особливо цінним є моделювання в середовищі MATLAB, Simulink тому, що крім кривих завадостійкості можна порівнювати вхідні та вихідні потоки інформаційних символів і на основі цього визначати наскрізну завадостійкість. У добавок MATLAB дозволяє перевіряти деякі теоретичні передумови. Якщо в каналі використовувати різні M–ступінчасті каскадні коди і різні канальні сигнали, то отримаємо цілу серію кривих завадостійкості, на основі аналізу яких не так вже й легко вибирати оптимальні варіанти складових компонент.

    Імітація моделей каналів передачі розроблялося в середовищі MATLAB за допомогою програмних модулів Simulink, Communication Toolbox і Communication Blockset. Це середовище дозволяє отримати результати моделювання або у вигляді кривих наскрізної завадостійкості (BER від відносини S/M в безперервної частини каналу передачі) шляхом порівняння вхідного і вихідного інформаційних потоків, або у вигляді прямого порівняння результатів (message error). При одноразовому випробуванні моделі результат прямого порівняння є випадковою величиною, але дозволяє при відповідній організації моделювання з'ясувати тонкі аспекти завадостійкості компонентів моделі. Коректність виконання процесів моделювання та отримання результатів для аналізу з допомогою програми MATLAB під сумнів не ставилися. Однак результати моделювання мають певний випадковий характер через кінцевий обсяг даних моделювання.
    1.12. Постановка задачі дослідження
    Розглянувши роль та важливість OFDM у застосуванні в нових системах передачі, як дротових так і радіо, стає зрозумілим що даний вид модуляції є перспективним. OFDM застосовується в багатьох сучасних стандартах бездротового доступу IEEE, ETSI та у стандартах інститутів інших країн, саме завдяки властивості зниження впливу різного виду завад. Але механізм реалізації є досить громістким, таким чином постає питання про вибір можливої альтернативи використанню OFDM-технології, з відповідним порівняльним аналізом та побудовою імітаційної моделі оцінки завадостійкості, для певного виду модуляції та відповідно стандарту бездротового широкосмугового доступу.

    Для дослідження завадостійкості радіотрактів СБШС модель повинна враховувати особливості багатопроменевого розповсюдження зазначених сигналів, бути чутливою до бітового відношення сигнал/шум в каналі розповсюдження та повторювати механізм формування сигналу досліджуваного стандарту.

    Операції завадостійкого кодування, перемежування та відповідні їм операції при демодуляції сигналу є незалежними від завадостійкості самих радіотрактів і в моделі можна їх не враховувати.

    Оцінка завадостійкості радіотракту здійснюється за величиною імовірності помилки переданого біта (дискрета) на ділянці від входу модулятора передавача до вих. демодулятора приймача. Під демодулятором мається на увазі пристрій переносу спектру OFDM-сигналу з ВЧ несівного коливання на частоту обробки (відеочастоту) в приймачі.


    Висновки до розділу

    Сигнали з OFDM широко застосовуються в каналах передачі з міжсимвольною інтерференцією, викликаною відображеннями від об'єктів. Ступінь заважає дії межсимвольной інтерференції і ймовірність помилкового прийому залежать від ступеня-перекриття переданіх інформаційних символів. Тому для поліпшення якості прийому сигналів в таких умовах доцільно збільшувати тривалість символу Т. Це можна зробити за рахунок зниження інформаційної швидкості передачі, що не завжди прийнятно.

    Одним з відомих способів боротьби з міжсимвольною інтерференцією, засновані на збільшення тривалості символу Т, є застосування методів многопозиційної модуляції, при яких тривалість символу на виході модулятора збільшується в log2 М порівняно з тривалістю Tb інформаційного символу: Тс = Tblog2M, де М - число можливих елементарних сигналів (сигнальних точок). При формуванні таких сигналів з OFDM використовуються методи фазової маніпуляції ФМ-2, ФМ-4, КАМ-16 і КАМ-64.

    Для боротьби з міжсимвольною інтерференцією застосовується захисний інтервал, який додається до переданого сигналу з OFDM, пілотсигнали і завадостійке кодування в поєднанні з перемежуванням. Вставляючи захисний інтервал достатній тривалості на початку кожного блоку символів, можна практично повністю виключити вплив межсимвольної інтерференції.

    РОЗДІЛ 2

    РОЗРОБКА ІМІТАЦІЙНОЇ МОДЕЛІ
    1   2   3   4   5   6


    написать администратору сайта