Главная страница
Навигация по странице:

  • Общие сведения

  • Эксплуатационные свойства

  • Список использованных литератур

  • Эксплуатационные свойства строительных материалов и изделий.. План Введение Общие сведения Эксплуатационные свойства. Заключение Введение


    Скачать 36.71 Kb.
    НазваниеПлан Введение Общие сведения Эксплуатационные свойства. Заключение Введение
    Дата04.04.2023
    Размер36.71 Kb.
    Формат файлаdocx
    Имя файлаЭксплуатационные свойства строительных материалов и изделий..docx
    ТипДокументы
    #1036248

    План

    1. Введение

    2. Общие сведения

    3. Эксплуатационные свойства.

    4. Заключение

    Введение

    Изучая строительные материалы, их классифицируют по отраслям применения в строительстве, например кровельные (рубероид, асбестоцементный шифер, черепица); стеновые (кирпич, керамическая камни, ячеистые и шлакобетонные блоки, деревянный брус).

    Для повышения эффективности строительства важным является снижение массы строительных конструкций. Это способствует снижению затрат на их перевозку, уменьшению мощности подъемно-транспортных средств, укрупнению строительных конструкций. Это направление реализуется увеличением производства легких металлических конструкций, легких бетонов на пористых заполнителях и ячеистых бетонов, а также производства особенно легких заполнителей, материалов из пластмасс и тому подобное.

    Рост поверхности строящихся зданий, степени насыщенности их инженерным и технологическим оборудованием требует увеличения выпуска конструкций с высокой несущей способностью, в том числе с предварительно напряженной арматурой. Для защиты ограждающих конструкций от климатических факторов необходимые материалы из-малыми водопоглощением и теплопроводностью, высокими морозо- и огнестойкостью. Повышение уровня внутреннего благоустройства зданий и гигиенических требований по ним требует разработки специальных материалов для канализации и водостоков, которые имеют высокую коррозионную стойкость и водонепроницаемость.

    Повышение эстетических требований к зданиям способствовало расширению ассортимента отделочных материалов.

    Строительные материалы выполняют свои функции только тогда, когда они прогрессивные, то есть снижают материалоемкость конструкций, обеспечивая нужную прочность, если их изготовления уменьшает за траты труда, топлива и электроэнергии.

    В современном строительстве целесообразно как можно шире использовать местные материалы, применяя для их изготовления техногенные отходы других производств (шлаки, золы, опилки и т.д.). Благодаря этому удается устранить проблему доставки строительных материалов на объекты за тысячи километров. Местные материалы (кирпич, дерево, природный камень) успешно заменяют железобетон, значительно удешевляют строительство, способствуют решению экологической проблемы и дают существенную экономию.

    Выбирая материал, нужно учитывать класс здания или сооружения, его конструктивное назначение, а также действие внешних факторов (физических, химических и т.д.), под влиянием которых изменяются свойства строительных материалов.

    В зависимости от назначения (для дорожных покрытий, теплоизоляции, гидроизоляции и т.д.) строительные материалы характеризуются определенным комплексом свойств, которые чаще всего задают в виде числовых величин, установленных нормативными документами — межгосударственными и государственными стандартами, техническими условиями или строительными нормами. Однако даже материалы одной по назначению группы (например, облицовочные), используемые в различных условиях (облицовка операционных, цехов химических предприятий, гидротехнических сооружений и т.п.), должны кроме общих для данной группы свойств иметь еще и специфические: повышенную гигиеничность, химическую стойкость, водостойкость тому подобное.

    Свойства строительных материалов в значительной степени зависят от их структуры, химического, минералогического и фазового состава, на которые, в свою очередь, влияют условия образования их в природе или свойства сырья, а также особенности технологии изготовления и обработки искусственных строительных материалов.

    Общие сведения

    Под свойствами материалов понимают их способность реагировать определенным образом на отдельные или совокупные внешние и внутренние воздействия – механические, химические, биологические и др. Они характеризуют собой общность или различие одних материалов по отношению к другим и проявляются в процессе переработки, применения, эксплуатации, испытания или сравнения. Например, действие на материал отрицательных температур характеризует его морозостойкость, огня – огнестойкость, сопротивляться воздействию нагрузок – прочность, упругость и др. Количественно свойства определяются при испытании (реже расчетным путем) и выражаются физическими величинами в соответствии с действующими нормативными документами. Различают простые и сложные свойства.

    Простые свойства нельзя разделить на другие. Например, масса материала не может быть представлена другими более простыми свойствами. Сложное свойство может быть разделено на два и более простых свойств. Например, долговечность или надежность материала характеризуются многими факторами в условиях эксплуатации (действие влаги, температуры, ветра, солнечной радиации, нагрузки и др.).

    Строительные материалы обладают комплексом различных свойств, которые определяют их качество, области рационального применения и возможность сочетания с другими материалами. Например, для несущих конструкций материалы должны хорошо сопротивляться разрушению и изменению формы под действием внешних нагрузок, т.е. обладать достаточной прочностью, упругостью, быть эстетичными и долговечными. В ограждающих конструкциях (наружных стенах) применяют материалы с низкой теплопроводностью и звукопроницаемостью. К материалам для устройства кровли зданий и сооружений предъявляются требования по водонепроницаемости, атмосферостойкости и т.д.

    По совокупности признаков различают физические, механические, химические, технологические, эксплуатационные, специальные и другие свойства. Все эти свойства взаимосвязаны между собой. Например, от структурно-физических свойств зависят механические, технологические, акустические, от механических – эксплуатационные, от технологических – механические, эстетические и др.

    Эксплуатационные свойства

    Свойства строительных материалов не остаются постоянными во времени, а постепенно изменяются. Причиной этому служат различные механические, химические, биологические и другие воздействия окружающей среды в процессе эксплуатации. Такие изменения могут происходить медленно (например, разрушение горных пород) и сравнительно быстро (например, коррозия металлов, бетона). Поэтому материалы должны обладать не только комплексом положительных свойств, но и сохранять их длительное время в процессе эксплуатации в конструкциях и сооружениях.

    Водостойкость – это способность материала противостоять растворяющему, адсорбционному и химическому воздействию воды. Практически это степень снижения прочности материала при предельном его водонасыщении. Численно характеризуется коэффициентом размягчения:



    где Rнас – предел прочности при сжатии материала в насыщенном водой состоянии, МПа; Rсух – предел прочности при сжатии сухого материала, МПа (СТБ 4.204).

    Снижение прочности насыщенных водой материалов обусловлено частичным разрушением структуры вследствие разрыва наиболее слабых химических связей. Величина коэффициента размягчения для разных материалов колеблется от 0 (необожженная глина) до 1,0 (стекло, битум, сталь). Критерием водостойкости принято считать 20%-е снижение прочности, т.е. материалы с Кразм  ≥ 0,8 относятся к водостойким. При Кразм < 0,8 материалы неводостойки и не применяются в воде и в сырых условиях. Водостойкость материалов можно повысить путем пропитки или нанесения на их поверхность гидрофобных покрытий.

    Морозостойкость – способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности, т.е. на заданном уровне. Основной причиной разрушения является вода, которая, замерзая в порах, увеличивается в объеме примерно на 9%, а также ряд дополняющих это действие явлений. Если поры заполнены водой, то возникает давление на стенки пор, достигающее иногда нескольких десятков мегапаскалей (до 200 МПа) и приводящее к разрушению материала. Обычно эти разрушения начинаются с поверхности, а затем распространяются внутрь материала. Хотя во многих пористых материалах вода и не заполняет более 90% объема пор, т.е. образующийся лед имеет свободное пространство для расширения, тем не менее материал разрушается в результате многократного попеременного замораживания и оттаивания изза дополнительно проявляющихся знакопеременных деформационных явлений, миграции жидкости и др.

    Материалы на морозостойкость испытывают в холодильных камерах путем замораживания насыщенных водой образцов при температуре –15…–17 °С и последующего их оттаивания при температуре +20 °С. Такой выбор температуры замораживания вызван тем, что в мелких порах и капиллярах вода замерзает при температурах значительно ниже 0 °С (до –10 °С). По числу выдерживаемых циклов замораживания и оттаивания материалы подразделяют на марки. Марка состоит из буквенного обозначения F (от англ. Freeze – замерзать) и численного значения, которое выражает количество циклов попеременного замораживания и оттаивания, выдерживаемых образцами без снижения прочности на 5…25% и потери массы на 3…5% в зависимости от назначения материала. Допустимые значения (пределы) потери массы и прочности приводятся в стандартах на конкретный материал. Нормативными документами приняты следующие марки строительных материалов по морозостойкости – F 10…F 300 (10, 15, 25, 35, 50, 100, 150, 200) и более.

    Морозостойкость материала зависит от плотности, прочности, пористости и степени насыщения водой. Пористые материалы являются морозостойкими, если они имеют закрытые поры. Плотные материалы (гранит, стекло и др.), как правило, морозостойки. Морозостойкость материалов можно повысить путем увеличения его прочности, уменьшения пористости, создания закрытых пор в материале, а так же за счет использования гидрофобизирующих веществ при изготовлении материала.

    Однако понятие «морозостойкость» может по разному оцениваться и различаться для разных материалов. Для металлов, композиционных материалов на основе битума и полимеров под морозостойкостью понимают их способность сохранять эксплуатационные (например, пластические) свойства на морозе. Характеризуется наименьшей температурой, при снижении до которой сохраняется требуемый уровень какого-либо свойства (например, материал еще не становится хрупким и его можно деформировать без образования трещин). Для некоторых материалов количественной характеристикой морозостойкости является коэффициент, который определяется как отношение значений какого-либо показателя свойств при низкой и комнатной температурах. Поэтому не существует однозначного определения маркам или классам различных материалов по морозостойкости, а также различаются методики их испытаний.

    Термическая стойкость – способность материала выдерживать или сохранять свои физико-механические свойства при чередовании резких тепловых изменений (нагревание и охлаждение). Это свойство зависит от однородности материала и температурного коэффициента расширения. Чем более однородный материал, тем он, как правило, более термостойкий. Например, каменные материалы из мономинеральных горных пород (мрамор) более термостойкие, чем из полиминеральных (гранит). Чем меньше коэффициент термического расширения, тем выше термическая стойкость материала.

    Пожарно-технические свойства. Основными техническими показателями пожарной опасности строительных материалов, изделий и конструкций являются горючесть, воспламеняемость, распространение пламени по поверхности, дымообразующая способность, токсичность продуктов горения и огнестойкость (СНБ 2.02.01, СТБ ЕN 13501).

    По горючести строительные материалы подразделяют на негорючие и горючие. К негорючим материалам относят в основном минеральные материалы (бетоны, растворы, стекло, керамика и др.).

    Горючесть устанавливается по содержанию в материале органических веществ. Если органики более 2% по массе, то материал без предварительной проверки относят к горючим и оценивают его степень горючести.

    Горючие материалы (на основе органических растительных компонентов – древесина, пластмассы (в абсолютном большинстве) и др.) в зависимости от параметров горючести подразделяются на слабо горючие (Г1), умеренно горючие (Г2), нормально горючие (Г3) и сильно горючие (Г4). Например, материалы типа Г1 и Г2 при действии открытого огня тлеют, обугливаются, а после устранения источника огня тление прекращается (ГОСТ 30244, СТБ EN ISO 1182). К таким материалам относят фибролит, арболит, древесину, пропитанную антипиренами и др.

    Воспламеняемость строительных материалов определяется поверхностной плотностью теплового потока (ППТП), т.е. воздействием лучистого теплового потока на единицу поверхности испытываемого образца (кВт/м2). Параметрами воспламеняемости материалов являются критическое (минимальное) значение поверхностной плотности теплового потока (КППТП), при котором возникает устойчивое пламенное горение, и время воспламенения. В зависимости от указанных параметров горючие строительные материалы по воспламеняемости подразделяются на три группы: В1, В2 и В3 (ГОСТ 30402). Для В1 КППТП составляет более 35 кВт/м2, В2 – от 20 до 35 и В3 – менее 20 кВт/м2.

    По распространению пламени по поверхности горючие строительные материалы подразделяются на группы (ГОСТ 30444): нераспространяющие пламя (РП1), слабо распространяющие пламя (РП2), умеренно распространяющие пламя (РП3), сильно распространяющие пламя (РП4). Характеристикой разделения на группы является величина теплового потока, при котором прекращается распространение пламени. Например, для РП1 КППТП должно составлять 11,0 кВт/м2 и более, а для РП4 – менее 5,0 кВт/м2.

    Некоторые органические материалы при действии огня не дают открытого пламени, но спекаются, оплавляются, образуют дым и выделяют вредные для здоровья человека газы. Если древесина и пенополистирол при горении выделяют только угарный и углекислый газы, то отдельные пластмассы выделяют фенол, оксиды серы, фосфора и другие вредные или ядовитые вещества. В зависимости от способности создавать ту или иную опасную среду строительные материалы (ГОСТ 12.1.044) подразделяются на группы: по дымообразующей способности – от группы Д1 (с малой дымообразующей способностью) до Д3 (с высокой дымообразующей способностью) и по токсичности продуктов горения – от группы Т1 (малоопасные) до Т4 (чрезвычайно опасные).

    В соответствии с СТБ 11.02.03 под огнестойкостью понимается способность строительных конструкций, зданий и сооружений сохранять свои функции при пожаре. Устанавливается по пределу огнестойкости (СНБ 2.02.01, ГОСТ 30247.0) – времени (мин) от начала теплового воздействия до наступления одного или последовательно нескольких нормируемых для данной конструкции признаков предельных состояний (потери несущей способности R, целостности E или теплоизолирующей способности I). Например, предел огнестойкости элементов деревянного дома составляет 15…20 мин, стального каркаса – 30 мин, железобетонных изделий – 60…120 мин, бетонных – 120…300 мин.

    По новой европейской классификации (Construct 98/319, СТБ ЕN 13501) при определении огнестойкости материалов рассматриваются также и реакция на огонь.

    Реакция на огонь характеризуется способностью материала под действием огня поддерживать горение. По реакции на огонь различают материалы:

    • негорючие, которые сами не выделяют никакой теплоты под действием огня;

    • горючие – способны выделять теплоту при их нагревании до определенной степени;

    • воспламеняющиеся – способны при нагревании выделять горючие газы в количествах, достаточных для протекания реакции горения в газовой фазе, т.е. создания пламени.

    Все они делятся на семь евроклассов: A1, A2, B, C, D, E и F. Лучшие материалы с точки зрения реакции на огонь (с самым высоким уровнем стойкости) относятся к классу А (А1 и А2), худшие – к классу F. При этом существуют различия в классификации и обозначении материалов в зависимости от их назначения (полы, стены, крыши, потолки), например для полов – AFL, BFL и т.д.

    Огнеупорность – свойство материала выдерживать длительное воздействие высокой температуры, не расплавляясь и не деформируясь. Характеризуется температурой, при которой образец в форме пирамиды деформируется и вершиной касается основания. По степени огнеупорности материалы подразделяют:

    • на легкоплавкие – способны длительное время выдерживать температуру до 1350 °С (пустотелый и полнотелый керамический кирпич);

    • тугоплавкие – 1350…1580 °С (гжельский кирпич для кладки печей);

    • огнеупорные – свыше 1580 °С (динас, шамот, корунд и др.).

    Химическая (коррозионная) стойкость – свойство материала сопротивляться коррозионному воздействию агрессивной среды (жидкой, газообразной, твердой) или физическому воздействию (нагревание, облучение, электрический ток).

    Коррозия (от лат. corrosio – разъедание) – это физико-химический процесс изменения свойств, повреждения и разрушения материалов вследствие перехода их компонентов в состав химических соединений с компонентами среды.

    Основными агрессивными агентами, вызывающими коррозию строительных материалов, являются пресная и соленая вода, минерализованные почвенные воды, растворенные в дождевой воде газы (SO3, SO2, СО2, NO2) от промышленных предприятий и автомашин, микроорганизмы (биокоррозия). На промышленных предприятиях коррозию строительных материалов часто вызывают более сильные агенты: растворы солей, кислот и щелочей, расплавленные материалы и горячие газы. Модифицирование коррозионной системы, ведущее к снижению скорости коррозии, является противокоррозионной защитой.

    Большинство строительных материалов не обладает достаточной стойкостью к действию кислот, солей, щелочей, природных факторов. Почти все цементы и конгломераты на их основе, а также мрамор, известняк, доломит не могут противостоять действию кислот, растворов некоторых солей. Битумы разрушаются при действии концентрированных растворов щелочей, а также изменяют свои свойства вследствие физико-химических превращений при действии природных факторов (кислорода воздуха, УФ-излучения, повышения температуры). Этот процесс носит название «старение» и проявляется в повышении хрупкости и снижении прочности, потере гидрофобности. Наиболее стойкими материалами к действию кислот и щелочей являются стекло, керамические материалы и многие изделия из пластмасс.

    Коррозионная стойкость зависит от химического состава материала и пористости, определяющей условия взаимодействия с агрессивной средой. Если в составе материала преобладает кремнезем (SiO2), то он, как правило, оказывается стойким к действию кислот, но взаимодействует со щелочами. Если в составе содержится больше основных оксидов (CaO и др.), то материал не стойкий к кислотам, но щелочами не разрушается.

    Химическая стойкость каждого материала оценивается нормативно-техническими документами. Одни материалы (например, керамические плитки и плиты) оценивают визуально по разрушению после воздействия испытательных растворов в течение установленного периода времени, другие – по изменению массы и прочности или по специальным коэффициентам, которые рассчитывают по отношению прочности (массы) материала после коррозионных испытаний к прочности (массе) до испытаний. При коэффициенте 0,90…0,95 материал признается химически стойким по отношению к исследуемой среде. Существуют и другие методики определения химической стойкости материалов.

    Различают также биологическую стойкость – способность материалов сопротивляться действию процессов жизнедеятельности бактерий и живых организмов (биологической коррозии). Низкую биологическую стойкость имеют преимущественно материалы органического происхождения.

    Радиационная стойкость (от лат. radiatio – излучение) – свойство материала сохранять исходный химический состав, структуру и технические характеристики в процессе и (или) после воздействия ионизирующих излучений. Радиационная стойкость материалов существенно зависит от вида радиации, величины и мощности поглощенной дозы, режима облучения (непрерывное или импульсное, кратковременное или длительное), условий эксплуатации материала (температура, давление, механические нагрузки), размеров конструкции, удельной поверхности и других факторов. При длительном воздействии на материал ионизирующих излучений возможны разрывы химических связей в структуре материала, смещение атомов в кристаллической решетке, образование внутренних напряжений, деформаций и трещин, изменения упругих характеристик, плотности и теплопроводности материала. Все это в конечном итоге приводит к разрушению материала.

    Количественной характеристикой или мерой радиационной стойкости материала может быть пороговая доза, при которой происходит существенное изменение определенных свойств материала, т.е. материал становится непригодным для конкретных условий применения или до заданной степени меняет значение характерного параметра. Для сравнительной оценки защитных свойств материала используют «толщину слоя половинного ослабления», равную толщине слоя защитного материала, необходимой для ослабления интенсивности излучения в 2 раза.

    Для защиты от радиоактивных излучений применяют гидратные, имеющие повышенное содержание химически связанной воды, и особо тяжелые бетоны (плотность 3000…5000 кг/м3). Такие бетоны применяют на атомных электростанциях, в исследовательских центрах и других сооружениях, где имеются радиоактивные источники.

    Долговечность – способность материалов, изделий или конструкций длительное время сопротивляться комплексному воздействию внешних и внутренних факторов в условиях эксплуатации. К таким факторам можно отнести интенсивность воздействия нагрузок, изменение температуры и влажности, действие различных газов или растворов солей, совместное действие воды и мороза, солнечных лучей и т.п. При длительном воздействии этих факторов может произойти нарушение сплошности структуры (образование микрои макротрещин), ухудшение состояния вещества (изменение кристаллической решетки, перекристаллизация, переход из аморфного состояния в кристаллическое и др.).

    Долговечность оценивается экспериментальным или расчетным путем в годах от начала эксплуатации в заданных условиях до момента достижения предельного состояния (критических уровней). За предельное состояние может приниматься максимальное или минимальное количественное значение показателей физико-механических свойств материала или изделий, ниже которых они не могут дальше эксплуатироваться в заданных условиях, требования безопасности или экономические показатели. При выборе таких показателей ориентируются на требования действующих строительных норм и стандартов.

    Заключение

    Наука о материалах (материаловедение) — один из решающих факторов научно-технического прогресса во всех отраслях хозяйства, в том числе в дорожно-транспортном комплексе.Основными направлениями развития строительного материаловедения являются теория структурообразования и технология композиционных материалов на основе использования фундаментальных наук, в первую очередь коллоидной химии и физико-химической механики. Их цель — повышение качества материалов и сокращение энергозатрат на их производство. Особую роль в строительном материаловедении XXI в. играют композиционные строительные материалы. Это материалы, которые состоят из двух основных компонентов:

    • матрицы, непрерывно распределенной по всему объему материала;

    • компонента, упрочняющего матрицу в виде дисперсных волокон или твердых частиц.

    При этом свойства нового композиционного материала гораздо лучше, чем свойства исходных компонентов. В зависимости от свойств материала матрицы, строительные композиционные материалы можно разделить на следующие группы:

    • композиции с неорганической матрицей, например цементной, силикатной, керамической (минеральные вяжущие);

    • с органической, например битумной, полимерной матрицей;

    • с металлической матрицей (металлические сплавы).

    В композиционных строительных материалах роль матрицы огромна: она объединяет в единое целое частицы заполнителя (зерна, дисперсные волокнистые частицы), придает монолитность и форму изделию, а также обеспечивает передачу внешних усилий на структуру материала, предохраняет ее от механических и коррозионных воздействий.

    Список использованных литератур

    • Автомобильные дороги Беларуси: энциклопедия / под общ. ред. А.В. Минина. Минск: БелЭн, 2002.

    • Веренько В.А. Новые материалы в дорожном строительстве: учеб.пособие / В.А. Веренько. Минск: Технопринт, 2004.

    • Горелышев Н.В. Асфальтобетон и другие битумоминеральные материалы: учеб. пособие / Н.В. Горелышев. М.: Терра, 1995.

    • Давыдов В.Н. Изготовление изделий из асфальтобетонных смесей: учеб. пособие для вузов / В.Н. Давыдов. М.: Изд. Ассоциации строит.вузов, 2003.

    • Дорожно-строительные материалы: учебник для вузов / И.М. Грушко [и др.]. 2-е изд., перераб. и доп. М.: Транспорт, 1991.

    • Ицкович С.М. Технология заполнителей бетона: учебник для вузов / С.М. Ицкович, Л.Д. Чумаков, Ю.М. Баженов. М.: Высш. шк.,1991.

    • Ковалев Я.Н. Активационные технологии дорожных композиционных материалов / Я.Н. Ковалев. Минск: БелЭн, 2002.

    • Ковалев Я.Н. Физико-химические основы технологии строительных материалов / Я.Н. Ковалев. Минск. : Новое знание; М.: ИНФРА-М, 2012.

    • Королев И.В. Пути экономии битума в дорожном строительстве / И.В. Королев. М.: Транспорт, 1986.

    • Леонович И.И. Дорожно-строительные материалы: учебник для вузов / И.И. Леонович, К.Ф. Шумчик. Минск: Вышэйш. шк., 1983.

    • Платонов А.П. Полимерные материалы в дорожном и аэродромном строительстве / А.П. Платонов. М.: Транспорт, 1994.

    • Рыбьев И.А. Основы строительного материаловедения в лекционном изложении: учеб. пособие для вузов / И.А. Рыбьев. М.: Астрель,2006.

    • Строительное материаловедение: учеб. пособие для вузов / В.А. Невский [и др.]; под ред. В.А. Невского. Ростов н/Д: Феникс, 2009.

    • Шейкин А.Е. Строительные материалы: учебник для вузов / А.Е. Шейкин. 2-е изд., перераб. и доп. М.: Стройиздат, 1978.

    • Юхневский П.И. Строительные материалы и изделия: учеб. пособие для вузов / П.И. Юхневский, Г.Т. Широкий. Минск: Технопринт,2004.


    написать администратору сайта