Главная страница
Навигация по странице:

  • Выполнение работы. Просвечивающий (трансмиссионный) электронный микроскоп

  • Устройство В состав ПЭМ входят следующие компоненты: вакуумная система

  • Рис. Принцип работы цилиндра Венельта

  • Автоэмиссионная электронная пушка

  • Химическое травление Ионное травление

  • Методы визуализации и формирование контраста Светлое поле

  • Дифракционный контраст и темное поле

  • Растровый электронный микроскоп

  • Растровый электронный микроскоп (РЭМ

  • Взаимодействие электронов с веществом

  • Детектирование вторичных электронов

  • Детектирование отражённых электронов

  • Работа при низких ускоряющих напряжениях

  • Основные мировые производители сканирующих электронных микроскопов

  • Практическая работа 3. Показатели и методы исследований на уровне элементарных частиц


    Скачать 0.83 Mb.
    НазваниеПоказатели и методы исследований на уровне элементарных частиц
    Дата05.02.2022
    Размер0.83 Mb.
    Формат файлаdocx
    Имя файлаПрактическая работа 3.docx
    ТипПрактическая работа
    #352228

    Практическая работа 3

    Тема: Показатели и методы исследований на уровне элементарных частиц.

    Цель занятия – ознакомиться с показателями и методами исследований на уровне элементарных частиц.

    Задание

    1. Изучить назначение, устройство, принцип действия, порядок работы, просвечивающего (трансмиссионного) электронного микроскопа, требования к подготовке образцов для микроскопирования.

    2. Изучить назначение, устройство, принцип действия, порядок работы, растрового электронного микроскопа, требования к подготовке образцов для микроскопирования.

    Выполнение работы.

    Просвечивающий (трансмиссионный) электронный микроскоп (ПЭМ, англ, TEM — Transmission electron microscopy) — устройство для получения изображения с помощью проходящего через образец пучка электронов.

    Отличается от других типов электронных микроскопов тем, что электронный пучок просвечивает образец, неоднородное поглощение электронов разными участками образца дает двумерную картину распределения плотности прошедшего электронного потока. Прошедший через образец поток затем фокусируется на регистрирующей поверхности магнитными электронными линзами (электронной оптикой) в увеличенном размере. В качестве регистрирующей поверхности применяют флуоресцентные экраны, покрытые слоем люминофора, фотоплёнку или фотопластинку, или приборы с зарядовой связью (на ПЗС-матрице). Например, на слое люминофора образуется светящееся видимое изображение.

    Так как поток электронов сильно поглощается веществом, изучаемые образцы должны иметь очень маленькую толщину, так называемые ультратонкие образцы. Ультратонким считается образец толщиной менее 0,1 мкм.



    Рис. Поперечный срез клетки бактерии сенной палочки, снятый при помощи аппарата «Tecnai T-12». Масштаб шкалы — 200 нм

    История



    Рис. Первый практический ПЭМ; экспозиция в музее Мюнхена (Германия)

    Первый ПЭМ создан немецкими инженерами-электронщиками Максом Кноллем и Эрнстом Руской 9 марта 1931 года.

    Первый пригодный для использования ПЭМ был построен Альбертом Пребусом и Дж. Хиллиером в университете Торонто (Канада) в 1938 году на основе принципов, предложенных ранее Кноллем и Руской.

    В 1986 году Эрнсту Руске за создание ПЭМ была присуждена Нобелевская премия.

    Теоретические основы

    Теоретически максимально возможное разрешение в оптическом микроскопе ограничено:

    • длиной волны, используемых для освещения образца;

    • угловой апертурой оптической системы — так называемым пределом Аббе, который выражается:



    Из формулы следует, что в оптическом микроскопе принципиально не может быть получено разрешение чем немного менее длины волны освещающего света, так как показатель преломления не может быть очень большим, практически, в иммерсионных микроскопических объективах около 1,5, а синус угла всегда меньше 1.

    В начале XX века ученые обсуждали вопрос преодоления ограничений относительно большой длины волны видимого света (длины волн 400—700 нанометров) путём использования пучка электронов, так как де-бройлевская длина волны электрона даже при не слишком больших его энергиях на много порядков меньше длины волны видимого света.

    Поток электронов в электронном микроскопе создаётся посредством термоэлектронной или автоэлектронной эмиссии. В первом случае электроны испускаются раскалённой проволокой из вольфрама (см. нить накаливания) или раскалённым монокристаллом гексаборида лантана.

    Испущенные электроны ускоряются высокой разностью потенциалов и «освещает» образец. Прошедший через образец поток пространственно модулирован по плотности электронного тока, в зависимости от «прозрачности» участков образца для электронов и далее фокусируется на регистрирующей поверхности электромагнитными (или в микроскопах с низким разрешением — электростатическими) линзами в многократно увеличенном размере.

    Устройство

    В состав ПЭМ входят следующие компоненты:

    • вакуумная система для удаления воздуха и увеличения длины свободного пробега электронов;

    • предметный столик: держатель образца, механизмы для изменения положения держателя в процессе работы и вакуумные шлюзы;

    • источник электронов: электронный прожектор (электронная пушка) для создания освещающего потока (пучка) электронов;

    • источник высокого напряжения для ускорения электронов;

    • апертуры — диафрагмы, ограничивающие расходимость электронного пучка;

    • система электромагнитных линз (и иногда электростатических линз) для управления и фокусировки электронного луча;

    • флуоресцирующий экран, на который проецируется увеличенное электронное изображение (постепенно вытесняется из употребления детекторами цифрового изображения).

    Коммерческие ПЭМ могут содержать дополнительные устройства, например, сканирующую приставку, позволяющую работать в режиме растрового ПЭМ).

    Вакуумная система

    Вакуумная система служит для откачки воздуха до низкого остаточного давления (обычно до 10-4 Па[1]) из области, в которой распространяется пучок электронов и обеспечивает уменьшение частоты столкновений электронов с атомами остаточного газа до незначительного уровня — увеличение длины свободного пробега.

    Вакуумная система откачки до рабочего давления состоит из нескольких ступеней:

    1. роторный или мембранный насос — форвакуумные насосы 1-й ступени;

    2. турбомолекулярный или диффузионный (англ.) насос — высоковакуумные насосы 2-й ступени;

    3. гетероионные насосы для откачки полости электронной пушки автоэлектронной эмиссии (если используется).

    С помощью насоса 1-й ступени достигается давление, требуемое для работы насоса 2-й ступени (низкий вакуум). Насос 2-й ступени снижает давление до необходимой рабочей величины.

    Части ПЭМ могут быть разделены:

    • специальной газовой разделяющей апертурой (англ. pressure-limiting aperture), пропускающей электронный пучок, но затрудняющей обмен остаточными газами между частями вакуумной системы;

    • запорными клапанами (англ. gate valve) для разделения вакуумных частей микроскопа и может использоваться для создания в разных частях вакуумной системы различного уровня вакуума (например, ПЭМ с автоэмиссией может оснащаться отдельной системой откачки воздуха из области электронной пушки для создания сверхвысокого вакуума 10-4…10-7 Па и ниже; система откачки может включать гетероионный насос).

    Предметный столик

    Рис. Сетка для поддержки образцов ПЭМ со срезом, полученным с помощью ультрамикротома

    Предметный столик предназначен для удерживания образца во время облучения электронами и состоит из следующих элементов:

    • держатель образца;

    • механизмы для изменения положения держателя (поворот, наклон);

    • шлюзы, позволяющие вводить держатель с образцом в вакуумную среду ПЭМ без повторной откачки всей вакуумной системы.

    Образцы либо помещаются на специальную сетку, либо вырезаются в форме держателя образца (самоподдерживающиеся образцы).

    Держатель пригоден для фиксации как сеток, так и самоподдерживаемых образцов стандартного размера. Распространённый диаметр сетки ПЭМ — 3,05 мм.

    Электронный прожектор

    Электронный прожектор (электронная пушка) предназначена для получения пучка электронов с помощью термоэлектронной (термоэлектронные пушки) или полевой (автоэмиссионные пушки) эмиссии.

    Термоэлектронный катод



    Рис. Катод из монокристалла LaB6 (гексаборид лантана)


    Рис. Вольфрамовый нагреваемый катод в форме изогнутой проволочной шпильки

    Термоэлектронная прожектор состоит из трёх элементов:

    • катод (нить накала);

    • венельт;

    • ускоряющий анод.


    Рис. Принцип работы цилиндра Венельта

    При нагревании вольфрамовая нить или заострённый кристалл гексаборида лантана испускают (эмитируют) электроны (см. термоэлектронная эмиссия). Ускоряясь под действием разности потенциалов (напряжения смещения), значительная часть электронов проходит через диафрагму в цилиндре Венельта. Изменяя напряжение смещения на цилиндре Венельта можно регулировать ток электронного прожектора. Для уменьшения тока на венель подают отрицательное относительно катода напряжение. Чем больше по модулю это отрицательное напряжение смещения, тем меньше площадь участка катода, испускающего электроны и тем меньше эмиссионный ток.

    Прошедшие через апертуру (отверстие) венельта траектории электронов пересекаются в точке, называемой кроссовером или точкой фокуса венельта и являющейся практически точечным источником электронов в электронно-оптической системе микроскопа.

    Автоэмиссионная электронная пушка

    При очень высокой напряжённости электрического поля на поверхности катода возникает автоэлектронная эмиссия электронов с холодного катода, так как в таких сильных полях эффективная работа выхода электронов из металла в вакуум снижается, этот явление называется эффектом Шоттки.

    Для создание высокого электрического поля на поверхности катода его выполняют в виде очень тонкого острия — обычно из вольфрамовой проволоки с радиусом скругления заострённого кончика менее 100 нм.

    Апертуры

    Апертуры — это металлические диафрагмы с отверстиями для прохождения электронов. диаметр и толщина пластин подбирается так, чтобы сквозь отверстия проходили только электроны, отклоняющиеся от оптической оси не более, чем на выбранный угол.

    Подготовка образцов

    Образцы для ПЭМ должны иметь толщину 20—200 нм. Наиболее удобны образцы с толщиной, сравнимой со средней длиной свободного пробега электронов в исследуемом образце, которая зависит от энергии электронов и может быть всего несколько десятков нанометров.

    Образцы имеющие достаточно малые размеры прозрачны для электронов, такие, как мелкодисперстные порошки или нанотрубки, могут быть быстро подготовлены для изучения в ПЭМ нанесением их на поддерживающую сетку или плёнку.

    Образцы материалов

    Главная задача при подготовке образцов — получить достаточно тонкие образцы с минимальными повреждениями структуры в процессе подготовки.

    Механическая обработка

    Для подготовки образцов может использоваться абразивная полировка. Полировка должна быть тщательной для получения постоянной толщины образца.

    Химическое травление

    Ионное травление

    Как правило, применяется в качестве финальной обработки после механической или химической предварительной обработки. Производится распылением поверхности образца бомбардировкой ускоренными ионами, обычно ионами аргона.

    Метод реплик

    Заключается в получении слепка изучаемой поверхности нанесением плёнки другого материала, с последующим удалением материала образца. Просвечиванию в ПЭМ подвергался полученный слепок. Широко применялся в ранних исследованиях с помощью ПЭМ, так как относительно прост, в отличие от других методов подготовки образцов.

    Биологические образцы

    Биологические образцы должны быть высушены или заморожены перед помещением в ПЭМ так как жидкая вода кипит в вакууме, нарушая его и разрезаны на тонкие пластинки.

    Традиционный метод

    Традиционное приготовление биологических образцов для ПЭМ включает в себя процедуры, позволяющие сохранить гистологию тканей при их подготовке для наблюдения в условиях высокого вакуума. Исходные образцы должны быть достаточно миниатюрными, чтобы обеспечить быстрое проникновение химических реактивов на всю толщину образца ткани (по крайней мере, в одном из измерений их размер не должен превышать 0,7 мм). Образцы подвергаются химической фиксации (обычно альдегидами), вторичной фиксации в тетраоксиде осмия, и затем высушиваются обработкой органическими растворителями (спирте или ацетоне). Обезвоженные образцы пропитываются эпоксидными смолами с отвердителями, которые затем полимеризуются. Получающиеся твердые блоки с включёнными в них биологическими образцами режутся на ультрамикротомах с помощью алмазных (реже — стеклянных) ножей на пластинки ?срезы) толщиной 20—100 нанометров. Срезы помещаются на специальные сетки (диаметром около 3 мм) и делают контрастными для электронного потока соединениями тяжелых металлов (урана, свинца, вольфрама и др.).

    Методы визуализации и формирование контраста

    Светлое поле

    Базовый режим в ПЭМ — это режим светлого поля. В этом режиме контраст формируется рассеиванием и поглощением электронов образцом. Области образца с большей толщиной и большим атомным номером выглядят темнее, тогда как области без образца в пучке электронов — светлыми (поэтому режим называется светлопольным).

    Дифракционный контраст и темное поле

    Часть электронов, проходящих через кристаллический образец, рассеивается в определённых направлениях из-за волновой природы электронов согласно закону Брэгга, формируя так называемый дифракционный контраст. Дифракционный контраст особо полезен при изучении дефектов кристаллической решетки.


    Рис. Дифракционная картина в направлении <110> с двойникового зерна ГЦК аустенитной стали
    Растровый электронный микроскоп



    Рис. Сканирующий электронный микроскоп Verios


    Рис. Микрофотография пыльцы позволяет оценить возможности режима ВЭ РЭМ



    Рис. Микрофотография интерфейса между оксидной (тёмные поля) и металлической (светлые поля) составляющими позволяет оценить возможности режима ОЭ РЭМ

    Растровый электронный микроскоп (РЭМ) или сканирующий электронный микроскоп (СЭМ) (англ. Scanning electron microscope, SEM) — прибор класса электронный микроскоп, предназначенный для получения изображения поверхности объекта с высоким (до 0,4 нанометра) пространственным разрешением, также информации о составе, строении и некоторых других свойствах приповерхностных слоёв. Основан на принципе взаимодействия электронного пучка с исследуемым объектом.

    Современный РЭМ позволяет работать в широком диапазоне увеличений приблизительно от 3—10 раз (то есть эквивалентно увеличению сильной ручной линзы) до 1 000 000 раз, что приблизительно в 500 раз превышает предел увеличения лучших оптических микроскопов.

    Сегодня возможности растровой электронной микроскопии используются практически во всех областях науки и промышленности, от биологии до наук о материалах. Существует огромное число выпускаемых рядом фирм разнообразных конструкций и типов РЭМ, оснащённых детекторами различных типов.

    История

    История электронной микроскопии (в частности, и РЭМ), началась с теоретических работ немецкого физика Ганса Буша о влиянии электромагнитного поля на траекторию заряженных частиц. В 1926 году он доказал, что такие поля могут быть использованы в качестве электромагнитных линз[1], установив таким образом основополагающие принципы геометрической электронной оптики. В ответ на это открытие возникла идея электронного микроскопа и две команды — Макс Кнолл и Эрнст Руска из Берлинского технического университета и Эрнст Бруш из лаборатории EAG попробовали реализовать эту идею на практике. И в 1931 году Кнолл и Руска создали первый просвечивающий электронный микроскоп[2].

    После перехода в немецкую радиокомпанию Telefunken, для проведения исследований телевизоров на катодных трубках, Макс Кнолл разработал анализатор электронной трубки или «анализатор электронного пучка», который моделировал все необходимые характеристики сканирующего электронного микроскопа: образец располагался с одной стороны отпаянной[стеклянной трубки, а электронная пушка с другой. Электроны, ускоренные напряжением от 500 до 4000 вольт, фокусировались на поверхности образца, а система катушек обеспечивала их отклонение. Пучок сканировал поверхность образца со скоростью 50 изображений в секунду, а измерение тока, прошедшего через образец, позволяло восстановить изображение его поверхности. Первый прибор, использующий этот принцип, был создан в 1935 году[3].

    В 1938 году немецкий специалист Манфред фон Арденне построил первый сканирующий электронный микроскоп[4]. Но этот аппарат ещё не был похож на современный РЭМ, так как на нём можно было смотреть только очень тонкие образцы на просвет. То есть это был скорее сканирующий просвечивающий электронный микроскоп (СПЭМ или STEM) — Фон Арденне, по сути, добавил сканирующую систему к просвечивающему электронному микроскопу. Кроме регистрации изображения на кинескопе, в приборе была реализована система фоторегистрации на плёнку, расположенную на вращающемся барабане. Электронный пучок диаметром 0,01 мкм сканировал поверхность образца, а прошедшие электроны засвечивали фотоплёнку, которая перемещалась синхронно с электронным пучком.

    Первая микрофотография, полученная на СПЭМ, зафиксировала увеличенный в 8000 раз кристалл оксида цинка (ZnO) с разрешением от 50 до 100 нанометров. Изображение составлялось из растра 400х400 точек и для его накопления было необходимо 20 минут. Микроскоп имел две электростатические линзы, окружённые отклоняющими катушками.

    В 1942 году, русский эмигрант, физик и инженер Владимир Зворыкин, работавший в то время в лаборатории Radio Corporation of America в Принстоне в США, опубликовал детали первого сканирующего электронного микроскопа, позволяющего проанализировать не только тонкий образец на просвет, но и поверхность массивного образца. Электронная пушка с вольфрамовым катодом митировала электроны, которые затем ускорялись напряжением 10 киловольт. Электронная оптика аппарата была составлена из трёх электростатических катушек, а отклоняющие катушки размещались между первой и второй линзой. Чтобы обеспечить удобство размещения образца и манипулирования им в конструкции РЭМ, электронная пушка располагалась внизу микроскопа (у этой конструкции была неприятная особенность — риск падения образца в колонну микроскопа).

    Этот первый РЭМ достигал разрешения порядка 50 нанометров. Но в это время бурно развивалась просвечивающая электронная микроскопия, на фоне которой РЭМ казался менее интересным прибором, что сказалось на скорости развития этого вида микроскопии[5].

    В конце 1940 годов Чарльз Отли, будучи председателем конференции отдела проектирования Кембриджского университета в Великобритании, заинтересовался электронной оптикой и решил объявить программу разработки сканирующего электронного микроскопа в дополнение к ведущимся в отделе физики работам над просвечивающим электронным микроскопом под руководством Вернона Эллиса Косслетта[en]. Один из студентов Чарльза Отли, Кен Сандер, начал работать над колонной для РЭМ, используя электростатические линзы, но вынужден был через год прервать работы из-за болезни. Работу в 1948 году возобновил Дэннис МакМиллан. Он с Чарльзом Отли построили их первый РЭМ (SEM1 или Scanning Electron Microscope 1) и в 1952 году этот инструмент достиг разрешения 50 нанометров и, что наиболее важно, обеспечил трёхмерный эффект воспроизведения рельефа образца — характерную особенность всех современных РЭМ[6].

    В 1960 году Томас Эверхарт и Ричард Торнли, изобретя новый детектор («детектор Эверхарта — Торнли»), ускорили развитие растрового электронного микроскопа. Этот детектор, крайне эффективный для сбора как вторичных, так и отражённых электронов, становится очень популярным и встречается сейчас на многих РЭМ.

    Работы, которые велись в Кембриджском университете группой Чарльза Отли в 60-е годы, весьма способствовали развитию РЭМ, и в 1965 году фирмой «Cambridge Instrument Co.» был выпущен первый коммерческий сканирующий электронный микроскоп — Stereoscan[7].

    Принцип работы

    Разрешающая способность (способность различать тонкие детали) оптического микроскопа ограничена длиной волны фотонов видимого света. Наиболее мощные оптические микроскопы могут обеспечить наблюдение деталей с размером 0.1—0.2 мкм[8]. Если мы захотим увидеть более тонкие детали, необходимо сократить длину волны, которая освещает объект исследования. Для этого можно использовать не фотоны, а, например, электроны, длина волны которых намного меньше. Электронные микроскопы — результат воплощения этой идеи.



    Рис. Принципиальная схема «исторического» сканирующего микроскопа. Начиная с 1980 года, кинескоп, синхронизированный с РЭМ, уступил место устройствам цифрового накопления изображений

    Нижеследующий рисунок иллюстрирует принципиальную схему РЭМ: электронный пучок направляется на анализируемый образец. В результате взаимодействия генерируются низкоэнергетичные вторичные электроны, которые собираются детектором вторичных электронов. Интенсивность электрического сигнала детектора зависит как от природы образца (в меньшей степени), так и от топографии (в большей степени) образца в области взаимодействия. Таким образом возможно получить карту рельефа проанализированной зоны.

    Тонкий электронный зонд генерируется электронной пушкой, которая играет роль источника электронов, и фокусируется электронными линзами (обычно электромагнитными, иногда электростатическими). Сканирующие катушки отклоняют зонд в двух взаимоперпендикулярных направлениях, сканируя поверхность образца зондом, подобно сканированию электронным пучком экрана электронно-лучевой трубки телевизора. Источник электронов, электронные линзы (обычно тороидальные магнитные) и отклоняющие катушки образуют систему, называемую электронной колонной.

    В современных РЭМ изображение регистрируется в цифровой форме, но первые РЭМы появились в начале 1960 годов задолго до распространения цифровой техники и поэтому изображение формировалось способом синхронизации развёрток электронного пучка в кинескопе с электронным пучком в РЭМ и регулировки интенсивности трубки вторичным сигналом. Изображение образца тогда появлялось на фосфоресцирующем экране кинескопа и могло быть зарегистрировано на фотоплёнке.

    Взаимодействие электронов с веществом



    Рис. Виды взаимодействия электронов с веществом

    Электроны зонда (пучка) взаимодействуют с материалом образца и генерируют различные типы сигналов: вторичные электроны, обратноотраженные электроны, Оже-электроны, рентгеновское излучение, световое излучение (катодолюминесценция) и т. д. Эти сигналы являются носителями информации о топографии и материале образца.

    Вторичные электроны

    В результате взаимодействия с атомами образца электроны первичного пучка могут передать часть своей энергии электронам образца. В результате такого взаимодействия может произойти отрыв электронов. Такие электроны называются вторичными. Эти электроны обычно обладают небольшой энергией (порядка 50 эВ). Часто электрон первичного пучка обладает энергией, достаточной для появления нескольких вторичных электронов.

    Так как энергия вторичных электронов невелика, их выход возможен только с приповерхностных слоев материала (менее 10 нм). Благодаря небольшой кинетической энергии эти электроны легко отклоняются небольшой разностью потенциалов. Это делает возможным существенно повысить эффективность детекторов (собрать максимально возможное количество электронов) и получить высококачественные изображения с хорошим отношением сигнал/шум и разрешением лучше 1 нм. Количество вторичных электронов зависит от угла столкновения электронного пучка с поверхностью образца, то есть от топографии. Поэтому сигнал вторичных электронов применяется для воспроизведения топографии образца.

    Устройство


    Рис. Схема РЭМ, оснащённого детектором рентгеновских лучей — «РСМА» (микрозондом)


    Рис. РЭМ JEOL JSM 6430F

    Основа сканирующего электронного микроскопа — электронная пушка и электронная колонна, функция которой состоит в формировании остросфокусированного электронного зонда средних энергий (200 эВ — 50 кэВ) на поверхности образца. Прибор обязательно должен быть оснащен вакуумной системой. Также в каждом РЭМ есть предметный столик, позволяющий перемещать образец минимум в трёх направлениях. При взаимодействии электронов с объектом возникают несколько видов сигналов, каждый из которых улавливается специальным детектором (см. ниже). Соответственно, изображения, продуцируемые микроскопом, могут быть построены с использованием различных сигналов, часто нескольких сигналов одновременно (например, изображение во вторичных электронах, изображение в отражённых электронах, рентгеновское изображение (карта)).

    РЭМ оснащаются детекторами, позволяющими отобрать и проанализировать излучение, возникшее в процессе взаимодействия, и частицы, изменившие энергию в результате взаимодействия электронного зонда с образцом. Разработанные методики позволяют исследовать не только свойства поверхности образца, но и визуализировать информацию о свойствах подповерхностных структур.

    Основные типы сигналов, которые генерируются и детектируются в процессе работы РЭМ:

    • вторичные электроны (ВЭ, режим рельефа)

    • отражённые электроны (ОЭ, режим контраста по среднему атомному номеру, а также режим рельефа)

    • прошедшие через образец электроны, в случае установленной STEM-приставки (чаще используется для исследования органических объектов)

    • дифракции отражённых электронов (ДОЭ)

    • потери тока на образце (ПЭ или детектор поглощённых электронов)

    • ток, прошедший через образец (ТЭ или детектор прошедших электронов)

    • характеристическое рентгеновское излучение (Рентгеноспектральный анализ)

    • световой сигнал (КЛ или катодолюминесценция).

    Все возможные типы детекторов, установленные на одном приборе, встречаются крайне редко.

    Детекторы вторичных электронов — первый и традиционно устанавливаемый на большинство РЭМ тип детекторов (в некоторых упрощённых настольных моделях используется только детектор отражённых электронов). В этом режиме разрешающая способность РЭМ максимальна. Из-за очень узкого электронного луча РЭМ обладают очень большой глубиной резкости, примерно на два порядка выше, чем у оптического микроскопа и позволяет получать четкие микрофотографии с характерным трехмерным эффектом для объектов со сложным рельефом. Это свойство РЭМ крайне полезно для понимания поверхностной структуры образца. Микрофотография пыльцы демонстрирует возможности режима ВЭ РЭМ.

    Отражённые электроны (ОЭ) — это электроны пучка, отражённые от образца упругим рассеиванием. В зависимости от конфигурации детектора они могут отображать либо композицию (состав) образца, либо его топографию (рельеф поверхности). В композиционном режиме ОЭ часто используются в аналитическом РЭМ совместно с анализом характеристических спектров рентгеновского излучения. Поскольку интенсивность сигнала ОЭ напрямую связана со средним атомным номером (Z) облучаемой в данным момент электронным пучком области образца, изображения ОЭ несут в себе информацию о распределении различных элементов в образце. Например, режим ОЭ позволяет обнаружить коллоидные золотые иммунные метки диаметра 5-10 нм, которые очень тяжело или даже невозможно обнаружить в биологических объектах в режиме ВЭ. Микрофотография поверхности аншлифа металл-оксидной системы демонстрирует возможности режима ОЭ РЭМ. В топографическом режиме ОЭ могут использоваться в условиях, когда традиционные детекторы вторичных электронов не работают, как например в РЭМ с переменным вакуумом.

    Характеристическое рентгеновское излучение генерируется, когда электрон пучка выбивает электрон с внутренней оболочки одного из атомов образца, заставляя электрон с более высокого энергетического уровня перейти на нижний уровень энергии с одновременным испусканием кванта рентгеновского излучения. Обработка спектра характеристического рентгеновского излучения позволяет осуществлять качественный и количественный элементный анализ состава образца.

    Режимы работы

    Обычно для получения информации о структуре поверхности используются вторичные и/или отражённые (обратно-рассеянные) электроны. Контраст во вторичных электронах сильнее всего зависит от рельефа поверхности, тогда как отражённые электроны несут информацию о распределении электронной плотности (области, обогащённые элементом с бо́льшим атомным номером выглядят ярче). Поэтому обратно-рассеянные электроны, которые генерируются одновременно со вторичными, кроме информации о морфологии поверхности содержат дополнительную информацию и о составе образца. Облучение образца пучком электронов приводит не только к образованию вторичных и отражённых электронов, но также вызывает испускание характеристического рентгеновского излучения. Анализ этого излучения позволяет определить элементный состав микрообъёма образца (разрешение для массивных образцов обычно не лучше 1 мкм).

    Детектирование вторичных электронов

    В качестве детектора вторичных электронов используется детектор Эверхарта — Торнли, позволяющий эффективно собирать электроны с энергией порядка 50 эВ.

    Детектирование отражённых электронов

    Многие РЭМ оснащены высокочувствительным полупроводниковым детектором обратно-рассеянных электронов. Детектор смонтирован на нижней поверхности объективной линзы либо вводится на специальном стержне под полюсной наконечник. Это позволяет путём выбора режима из меню получить изображения топографии поверхности, изображение в композиционном контрасте или в темном поле.

    Элементный микроанализ

    Для анализа элементного состава применяется рентгеноспектральный микроанализ, в котором детектируется характеристическое рентгеновское излучение вещества, возникающее при облучении поверхности образца электронами. Существует энергодисперсионные (EDX) и волнодисперсионные (WDX) анализаторы.

    До настоящего времени используются энергодисперсионные спектрометры с азотным охлаждением, однако в последние годы производители переходят на безазотные детекторы.

    Работа при низких ускоряющих напряжениях

    Рис. Изображение, полученное при ускоряющем напряжении 300 В. Распределение островков клея на липкой бумаге для заметок (Post-It note). Проводящее покрытие не наносилось: подобные деликатные образцы легко повреждаются при напылении покрытий, а также пучком электронов высоких энергий.

    Современные микроскопы способны работать при низких ускоряющих напряжениях, до 200 вольт. Приложение замедляющего потенциала позволяет уменьшать ускоряющее напряжение до 10 вольт. Низкие напряжения имеют ряд преимуществ. При низком напряжении можно достичь состояние равновесия, когда количество электронов пучка поглощённых образцом равно количеству электронов, эмитированных образцом. В этих условиях нанесение проводящих покрытий на образец не требуется. При низких напряжениях повреждение образца электронами пучка минимально, что важно для деликатных образцов. И, наконец, при низких напряжениях зона взаимодействия электронов пучка с образцом резко уменьшается, что ведёт к существенному увеличению пространственного разрешения при работе с отражёнными электронами и с рентгеновским излучением.

    Переменный вакуум

    Часть современных микроскопов оборудована вакуумной системой, способной поддерживать высокий (и сверхвысокий) 10−3 Па вакуум в электронной колонне, и относительно плохой вакуум до 5 — 2000 Па в камере образцов. В результате образец находится в хотя и разреженной, но достаточно плотной для нейтрализации поверхностного заряда, атмосфере (обычно состоящей из паров воды или азота). Молекулы газов ионизируются под воздействием первичных электронов, испускаемых катодом. Образовавшиеся положительные ионы взаимодействуют с электронами, которые накапливаются на образце и нейтрализуют поверхностный заряд.

    В результате диэлектрические образцы можно наблюдать без проводящего покрытия. Если микроскоп оборудован также и охлаждающим держателем образцов, то появляется возможность работы с влажными образцами и даже с водой. Например, можно наблюдать непосредственно в микроскопе за растворением и рекристаллизацией поваренной соли (или других кристаллов).

    Разрешение

    Пространственное разрешение сканирующего электронного микроскопа зависит как от диаметра электронного пучка, так и от размера области взаимодействия электронного зонда с образцом. Размер электронного зонда и размер области взаимодействия зонда с образцом намного больше расстояния между атомами мишени. Хотя разрешение растровых электронных микроскопов уступает разрешению просвечивающих микроскопов, они имеют ряд преимуществ, таких как возможность изучения топографии образца, визуализация сравнительно большой области образца, исследование массивных объектов (а не только тонких плёнок), набор аналитических методов, позволяющих измерять состав и свойства изучаемого объекта.

    В зависимости от конкретного прибора и параметров эксперимента, может быть получено разрешение от десятков до доли нанометра. На 2009 год наилучшее разрешение было достигнуто на микроскопе Hitachi S-5500 и составило 0,4 нм (при напряжении 30 кВ).

    Как правило, наилучшее разрешение может быть получено при использовании вторичных электронов, наихудшее — в характеристическом рентгеновском излучении. Последнее связано с большим размером области возбуждения излучения, в несколько раз превышающим размер электронного зонда. При использовании режима низкого вакуума разрешение несколько ухудшается.

    Подготовка объектов

    Проводящие (металлические) образцы обычно не требуют специальной подготовки, и могут быть непосредственно помещены в камеру микроскопа. Если требуется, образцы могут подвергаться очистке. Для обозрения внутренней структуры и (или) использования микрорентгеноспектрального анализа могут быть приготовлены шлифы.

    Порошки и наночастицы наносятся на зеркального качества поверхности (стекло, пластик, слюда и др.) в виде взвеси в воде или органическом растворителе. После высыхания жидкости образец может быть использован в микроскопе. Порошки с более крупными частицами могут наноситься на проводящий углеродный скотч.

    Непроводящие образцы обычно подвергаются напылению тонкого проводящего слоя для снятия заряда и экранирования падающего пучка от накопленного в объёме материала заряда. Для проводящих покрытий чаще всего используют углерод, золото или сплав золота с палладием. Первый полезен для рентгеновского микроанализа. Напыление золота или сплава на его основе позволяет получать микрофотографии с бо́льшим увеличением и контрастом (чаще всего без собственной визуализации). Если невозможно напыление плёнки на образец, то в РЭМ с переменным вакуумом возможно снятие заряда с образца ионами вводимых в камеру газов (обычно водяные пары или азот). Накопления заряда на образце так же можно избежать при работе при низких ускоряющих напряжениях (обычно порядка 1 кВ).

    Биологические образцы должны быть химически зафиксированы, дегидратированы в сериях растворов спирта или ацетона с увеличивающейся от 30-50 % до 100 % концентрацией, затем спирт (или ацетон) должен быть удален из образца в специальном аппарате, в котором спирт замещается на жидкую двуокись углерода, которая переводится в газообразное состояние посредством перехода через критическую тройную точку.

    Применение

    Растровые микроскопы применяются как исследовательский инструмент в физике, электронике, биологии, фармацевтике, медицине, материаловедении, и т. д. Их главная функция — получение увеличенного изображения исследуемого образца и/или изображений образца в различных регистрируемых сигналах. Сопоставление изображений, полученных в разных сигналах, позволяют делать вывод о морфологии и составе поверхности.

    Характеристики современного растрового микроскопа

    Характеристики растрового электронного микроскопа Magellan XHR SEM

    • Разрешение при оптимальной рабочей дистанции

    0,8 нм при 15 кВ

    0,8 нм при 2 кВ

    0,9 нм при 1 кВ

    1,5 нм при 200 В

    • Разрешение в точке схождения

    0,8 нм при 15 кВ

    0,9 нм при 5 кВ

    1,2 нм при 1 кВ

    Основные мировые производители сканирующих электронных микроскопов

    • Carl Zeiss Microscopy (часть Carl Zeiss Group) — Германия

    • FEI Company — США (часть Thermo Fisher Scientific)

    • Hitachi — Япония

    • JEOL — Япония (Japan Electron Optics Laboratory)

    • Tescan — Чехия

    • KYKY — Китай

    • Сoxem — Корея



    Контрольные вопросы
    1. Для чего предназначен просвечивающий (трансмиссионный) электронный микроскоп?

    2. Каково устройство просвечивающего (трансмиссионного) электронного микроскопа?

    3. Какой принцип действия просвечивающего (трансмиссионного) электронного микроскопа?

    4. Какой порядок работы на просвечивающем (трансмиссионном) электронном микроскопе

    5. Как подготовить образцы для микроскопирования на просвечивающем (трансмиссионном) электронном микроскопе?

    6. Для чего предназначен растровый электронный микроскоп?

    7. Каково устройство растрового электронного микроскопа?

    8. Какой принцип действия растрового электронного микроскопа?

    9. Какой порядок работы на растровом электронном микроскопе

    10. Как подготовить образцы для микроскопирования на растровом электронном микроскопе?


    написать администратору сайта